
A Parallelization of Instance Methods
of a .NET Application that Search
for Required Structured Data Stored
in a Skip List

Igor Košt’ál

Abstract The skip list is amorememory efficient version of a single level linked list.
Searching for the required data elements in a skip list is more efficient than in a single
level linked list because a skip list allows us to skip to the searched element in it. We
have created a C# .NET application that uses a skip list with structured data in its data
elements. This application can perform search operations within these data elements
using serial, threaded, and parallelized instance methods, and simultaneously it is
able tomeasure the execution times of particular methods. By comparing these times,
we have examined the execution efficiency of parallelized instance methods of the
object of the .NET application compared to threaded and serial instance methods
of the same object. The results and evaluation of this examination are listed in the
paper.

Keywords Parallelization · Skip list · Data element · Structured data · .NET
application

1 Introduction

A single level linked list (a simple list) is a dynamic data structure that is used for
storing data in applications. However, there are also multi-level linked lists (called
skip lists [5]) that are more complicated for creating but searching for the required
data elements in them is more efficient because they allow us to skip to the searched
element in them.

We dealt with a comparison of execution efficiency of the use of a skip list and
simple list in a C# .NET Application [2]. This application had the same structured
data of students stored in the data elements of its skip and simple list. From the results
of the comparison of the execution times of the search operations and the insertion
operation performed by our .NET application in the skip list and execution times of

I. Košt’ál (B)
Faculty of Economic Informatics, University of Economics in Bratislava, Dolnozemská cesta 1,
852 35 Bratislava, Slovakia
e-mail: igor.kostal@euba.sk

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
S. Khakhomov et al. (eds.), Research and Education: Traditions and Innovations,
Lecture Notes in Networks and Systems 422,
https://doi.org/10.1007/978-981-19-0379-3_11

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-0379-3_11&domain=pdf
mailto:igor.kostal@euba.sk
https://doi.org/10.1007/978-981-19-0379-3_11

104 I. Košt’ál

the same operations performed by the same application but in a simple list, it was
obvious that the use of the skip list in this application was with a bigger number of
data elements containing structured data, significantly more efficient [2].

We were interested in now, how to parallelize search operations in a skip list
with the structured data of students in its data elements. We have created a C# .NET
application that uses a skip list with such data elements. This application parallelizes
the execution of search instancemethods in its instancemethods, and at the same time
measures the execution times of its serial and parallel search instance methods. By
comparing these times,we have examined the execution efficiency of a parallelization
of search instance methods of our C# application. The results and evaluation of this
examination are listed in the paper.

2 A Simple List and a Skip List

A one-way linked list (a simple list) (Fig. 1a) is a set of dynamically allocated
elements (called nodes), arranged in such a way that each element contains two
items—the data and a reference to the next element [2]. The last node has a reference
to NIL (a special node, which terminates the list). A linked list is a real dynamic data
structure [1]. The number of nodes in a list is not fixed and can grow and shrink on
demand [1]. Any application which has to deal with an unknown number of objects
will need to use a linked list [1]. We might need to examine every node of the list
when searching a simple list. If the list is stored in sorted order and every other node
of the list also has a reference to the node four ahead it in the list (a skip list) (Fig. 1b),
we have to examine no more than [n/4] + 2 nodes (where n is the length of the list)
[5]. This data structure could be used for fast searching for required nodes.

We have created a C# .NET application that uses a skip list, but with structured
data of students in its data elements (Fig. 2). Using our .NET application, we have
examined the execution efficiency of a parallelization of search instance methods of
this application.

a 3 7 10 15 17 20 21 28 29 31 NIL

b 15 28

3 10 17 21 29
7 20 31

NIL

data in data elementdata element finishing element

Fig. 1 The simple list a and the skip list bwith simple, unstructured data in their data elements [5]

A Parallelization of Instance Methods of a .NET Application … 105

Fig. 2 The internal structure of the skip list that uses our .NET application [2]

3 Parallel Programming in the .NET Framework

Nowadays, many personal computers and workstations have multiple CPU cores
that enable multiple threads to be executed simultaneously. To take advantage of the
hardware, we can parallelize our code to distribute work across multiple processors.
The Microsoft Visual Studio development environment and the .NET Framework 4
enhance support for parallel programming by providing a runtime, class library types,
for example, the Task Parallel Library, and diagnostic tools. These features simplify
parallel development. We can write efficient, fine-grained, and scalable parallel code
in a natural idiom without having to work directly with threads or the thread pool.
[3]

The Task Parallel Library (TPL) is a set of public types and APIs (Applica-
tion Programming Interfaces) in the System.Threading and System.Threading.Tasks
namespaces. The purpose of the TPL is to make developers more productive by
simplifying the process of adding parallelism and concurrency to applications [3].

We know two kinds of a parallelism in parallel programming in the .NET
Framework—data and task parallelism.

Data parallelism refers to scenarios in which the same operation is performed
concurrently (that is, in parallel) on elements in a source collection or array. In
data parallel operations, the source collection is partitioned so that multiple threads
can operate on different segments concurrently. The TPL supports data parallelism
through the System.Threading.Tasks.Parallel class. This class provides method-
based parallel implementations of for and foreach loops. We write the loop logic
for a Parallel.For or Parallel.ForEach loop much as we would write a sequential
loop. We do not have to create threads or queue work items. The TPL handles all the
low-level work for us. When a parallel loop runs, the TPL partitions the data source

106 I. Košt’ál

so that the loop can operate on multiple parts concurrently [3]. Data parallelism with
the Parallel.ForEach method is used in a parallelized code of our .NET application.

The TPL is based on the concept of a task, which represents an asynchronous
operation. In some ways, a task resembles a thread or ThreadPool work item, but
at a higher level of abstraction. The term task parallelism refers to one or more
independent tasks running concurrently [3]. Task parallelismwith theParallel.Invoke
method is used in a parallelized code of our .NET application.

Several overloads of the Parallel.For and Parallel.ForEach methods are used
in data parallelism. We introduce a brief description of this overload of the
Parallel.ForEach method from [3] that is used in a parallelized code of our .NET
application. This description explains how this method operate in this code.

The Parallel.ForEachmethod executes a foreach operation on an IEnumerable in
which iterations may run in parallel.

Syntax
public static ForEach<TSource>(IEnumerable<TSource> source, Action
<TSource> body);
Type Parameters
TSource—the type of the data in the source.

Parameters
IEnumerable<TSource> source—an enumerable data source.
Action<TSource> body—the delegate that is invoked once per iteration.

Remarks
The body delegate is invoked once for each element in the source enumerable. It

is provided with the current element as a parameter. The Parallel.ForEach method
does not guarantee the order of execution. Unlike a sequential ForEach loop, the
incoming values are not always processed in order.

We also introduce a brief description of the Parallel.Invoke method from [3] that
is used in a parallelized code of our .NET application. This description explains how
this method operate in this code.

The Parallel.Invoke method executes each of the provided actions, possibly in
parallel.

Syntax
public static void Invoke (params Action[] actions);

Parameters
Action[] actions—an array of Action to execute.

Remarks
This method can be used to execute a set of operations, potentially in parallel. No

guarantees are made about the order in which the operations execute or whether they
execute in parallel. This method does not return until each of the provided operations
has completed, regardless of whether completion occurs due to normal or exceptional
termination.

A Parallelization of Instance Methods of a .NET Application … 107

4 C# .NET Application with Serial, Threaded, and Parallel
Instance Methods

Our .NET application was developed in the C# language in the development environ-
ment Microsoft Visual Studio 2019 Enterprise for the Microsoft .NET Framework
version 4 and for the Microsoft Windows 10 operating system. The .NET applica-
tion has the structured data of students stored in the data elements of a skip list. This
application can perform search operations within these data elements using serial,
threaded, and parallelized instance methods, simultaneously it is able to measure the
execution times of particular methods, and write these times into the LogFile.txt disc
file. The source code of this application is divided into two parts that are saved into
files:

SkipLNodeClasses.cs—the SkipList class is defined here. This class includes
member methods that are able to perform all search operations such as searching
for students (data elements) according to their points for accommodation, year
of birth, surname, ISIC, and according to distance between their residence and
university in a skip list (find_1st_pts, find_1st_y, find_1st_surname, find_1st_isic,
find_1st_distanceOfResid), inserting of a new student (a data element) sorted into
a skip list (insert_1st). The SkipList class also includes service member methods
serving to delete particular data elements or all data elements. The SkipListNode
nested class is defined within the scope of the SkipList class. The SkipListNode class
object represents one data element (node) of a skip list. In the SkipList class, two
structures the Student and the date are declared, by which the data part of the data
element of the skip list is created. From the SkipLNodeClasses.cs source filewas built
(.dll) library into the SkipListNode.dll file that is the dynamic run-time component
of our .NET application.

SkipList_WinForm1.cs—the SkipList_WinForm1 class that is derived from the
System.Windows.Forms.Form class is defined here. This system class represents a
window that makes up an application’s user interface. The SkipList_WinForm1 class
includes event handlers of all controls of the user interface of our .NET application
and helper methods. The SerialSearchBtnClick, SearchOnMultipleThrdsBtnClick,
ParallelInvokeSearchBtnClick, and ParallelForEachSearchBtnClick event handlers
of four buttons contain serial, threaded, and parallelized search operations source
code that allows us to search for students (data elements) in a skip list according to
several required parameters, for example, according to several points for accom-
modation, several distances of a residence of students from the university, etc.
The user inserts these several different required parameters into the requiredVal-
ueTB input text box of the .NET application. From this text box, they are read by
the Parse_requiredValueTB helper member method, which is called by each of the
mentioned event handlers.

The SerialSearchBtnClick event handler (Fig. 4) searches for students (data
elements) in the skip list according to several required parameters in serial. In the
displayed part of the source code of this event handler, students are searched for
according to the 4 required distances of their residence from the university. The

108 I. Košt’ál

event handler performs a search on one thread in serial using four calls to the Search-
StudentsWithDistOfResid helper member method (Fig. 3), which performs the real
search for particular students (data elements) in the skip list.

The SearchOnMultipleThrdsBtnClick event handler (Fig. 5) searches for students
(data elements) in the skip list according to several required parameters on multiple
threads. In the displayed part of the source code of this event handler, students are
searched for according to the 4 required distances of their residence from the univer-
sity. The event handler performs a search on four threads by calling the Search-
StudentsWithDistOfResid helper member method (Fig. 3), which performs the real
search for particular students (data elements) in the skip list.

private string SearchStudentsWithDistOfResid(int distance_f) {
string str_result = ""; int i = 0;

if (flag_stream == 1)
while (i < students_count) {

if (ref_arr_students[i].isic != 30000000000000001)
// calling the instance method of the ‘list’ object (this is object of the ‘SkipList’ class)

str_result += list.find_1st_distanceOfResid(ref_arr_students[i], distance_f);
i++;

} . . .
return str_result;

}

Fig. 3 The part of the source code of the SearchStudentsWithDistOfResid helper member method

private void SerialSearchBtnClick(object sender, EventArgs e) {
string str_result = ""; string str_result1 = ""; string str_result2 = ""; string str_result3 = "";
string str_result4 = ""; . . .
int requiredValuesCount = Parse_requiredValueTB(); // calling the helper member method
. . .
// if the ‘residDistance_RB’ radio button is checked
else if (residDistance_RB.Checked) {

// if the user inserted 4 values into the 'requiredValueTB' text box
if (requiredValuesCount == 4) { . . .

int dist1 = numbersIn_requiredValueTB[0]; int dist2 = numbersIn_requiredValueTB[1];
int dist3 = numbersIn_requiredValueTB[2]; int dist4 = numbersIn_requiredValueTB[3];

// perform four tasks in serial on the source data
str_result1 = SearchStudentsWithDistOfResid(dist1); // calling the helper member method
str_result2 = SearchStudentsWithDistOfResid(dist2);
str_result3 = SearchStudentsWithDistOfResid(dist3);
str_result4 = SearchStudentsWithDistOfResid(dist4);
. . . } . . . } . . . }

Fig. 4 The part of the source code of the SerialSearchBtnClick event handler

A Parallelization of Instance Methods of a .NET Application … 109

private void SearchOnMultipleThrdsBtnClick(object sender, EventArgs e) {
string str_result = ""; string str_result1 = ""; string str_result2 = ""; string str_result3 = "";
string str_result4 = ""; . . .
int requiredValuesCount = Parse_requiredValueTB(); // calling the helper member method
. . .
else if (residDistance_RB.Checked) { // if the ‘residDistance_RB’ radio button is checked

// if the user inserted 4 values into the 'requiredValueTB' text box
if (requiredValuesCount == 4) {

. . .
// create the delegate object and bind to the 'SearchStudentsWithDistOfResid' target method
AsyncMCallerWF1C callerM1 = new AsyncMCallerWF1C(SearchStudentsWithDistOfResid);
. . .
// execute 4 methods asynchronously on 4 secondary threads
IAsyncResult asyncState3 = callerM1.BeginInvoke(numbersIn_requiredValueTB[3], null, null);
IAsyncResult asyncState2 = callerM1.BeginInvoke(numbersIn_requiredValueTB[2], null, null);
IAsyncResult asyncState1 = callerM1.BeginInvoke(numbersIn_requiredValueTB[1], null, null);
IAsyncResult asyncState0 = callerM1.BeginInvoke(numbersIn_requiredValueTB[0], null, null);
. . .
// capture all return values
str_result1 = callerM1.EndInvoke(asyncState3);
str_result2 = callerM1.EndInvoke(asyncState2);
str_result3 = callerM1.EndInvoke(asyncState1);
str_result4 = callerM1.EndInvoke(asyncState0);
. . . } . . . } . . . }

Fig. 5 The part of the source code of the SearchOnMultipleThrdsBtnClick event handler

The ParallelInvokeSearchBtnClick event handler (Fig. 6) searches for students
(data elements) in the skip list according to several required parameters in parallel,
using task parallelism. In the displayed part of the source code of this event handler,
students are searched for according to the 4 required distances of their residence
from the university. The event handler performs a search in parallel by calling the
Parallel.Invoke method, in which task parallelism is implemented. The SearchStu-
dentsWithDistOfResid helper membermethod (Fig. 3) is called in the lambda expres-
sions of the Parallel.Invokemethod. This helper method performs the real search for
particular students (data elements) in the skip list.

The ParallelForEachSearchBtnClick event handler (Fig. 7) searches for students
(data elements) in the skip list according to several required parameters in parallel,
using data parallelism. In the displayed part of the source code of this event handler,
students are searched for according to the 4 required distances of their residence
from the university. The event handler performs a search in parallel by calling the
Parallel.ForEach method, in which data parallelism is implemented. The Search-
StudentsWithDistOfResid helper member method (Fig. 3) is called in the lambda
expression of the Parallel.ForEach method. This helper method performs the real
search for particular students (data elements) in the skip list.

110 I. Košt’ál

private void ParallelInvokeSearchBtnClick(object sender, EventArgs e) {
string str_result1 = ""; string str_result2 = ""; string str_result3 = ""; string str_result4 = ""; . . .
int requiredValuesCount = Parse_requiredValueTB(); // calling the helper member method . . .
else if (residDistance_RB.Checked) { // if the 'residDistance_RB' radio button is checked

// if the user inserted 4 values into the 'requiredValueTB' text box
if (requiredValuesCount == 4) { . . .

int dst1 = numbersIn_requiredValueTB[0]; int dst2 = numbersIn_requiredValueTB[1];
int dst3 = numbersIn_requiredValueTB[2]; int dst4 = numbersIn_requiredValueTB[3];

// perform four tasks in parallel on the source data
Parallel.Invoke(

() => { str_result1 = SearchStudentsWithDistOfResid(dst1); }, //close the first Action
() => { str_result2 = SearchStudentsWithDistOfResid(dst2); },//close the second Action
() => { str_result3 = SearchStudentsWithDistOfResid(dst3); }, // close the third Action
() => { str_result4 = SearchStudentsWithDistOfResid(dst4); } // close the fourth Action
); // close Parallel.Invoke . . . } . . . } . . . }

Fig. 6 The part of the source code of the ParallelInvokeSearchBtnClick event handler

private void ParallelForEachSearchBtnClick(object sender, EventArgs e) { . . .
int requiredValuesCount = Parse_requiredValueTB(); // calling the helper member method . . .
else if (residDistance_RB.Checked) { // if the 'residDistance_RB' radio button is checked

if (requiredValuesCount > 0) {
int k = 0; string local_str_result = "";
int[] integer_inputs = new int[requiredValuesCount];
while (k < requiredValuesCount) {

integer_inputs[k] = numbersIn_requiredValueTB[k]; k++; }
// the 'local_strings' object represents a thread-safe, unordered collection of objects
var local_strings = new ConcurrentBag<string>();
Parallel.ForEach(integer_inputs, currentInput =>
{ local_strings.Add(SearchStudentsWithDistOfResid(currentInput)); });
List<string> strings_list = local_strings.ToList();

foreach (string str in strings_list) local_str_result += str;
. . . } . . . } . . . }

Fig. 7 The part of the source code of the ParallelForEachSearchBtnClick event handler

The SkipList_WinForm1.cs source file was built into the SkipList_WinForm.exe
file. The SkipList_WinForm.exe is a Windows application that uses the dynamic
run-time component SkipListNode.dll.

As we mentioned above, our .NET application can perform search operations
within data elements of a skip list using serial, threaded, and parallelized instance
methods, and simultaneously it is able to measure the execution times of particular
methods. By comparing these times, we have examined the execution efficiency of
parallel search operations in a skip list in an experiment.

A Parallelization of Instance Methods of a .NET Application … 111

5 Experiment, its Results and their Brief Analysis

We assume that parallel search operations of our .NET application searching for
students (data elements) in the skip list according to several required parameters
are more execution efficient than serial and threaded search operations of the same
.NET application searching for the same students in the same skip list according to
the same several required parameters. With an increasing number of data elements
in the skip list, the execution efficiency of parallel search operations should increase
compared to the execution efficiency of serial and threaded search operations.

To verify these assumptions, we performed an experiment using our .NET appli-
cation. During this experiment, our .NET application worked with 4 large sets
of student data, which were stored in 4 disk files students_c.txt, students100c.txt,
students200c.txt and students300c.txt. For each search, the .NET application always
loaded data from one of these four disk files into its skip list. The first set of data after
loading into the skip list of the .NET application contained 11 data elements with
structured data of students. The other 3 data sets, also after loading into the .NET
application skip list, contained 100, 200 and 300 data elements with structured data
of students. The .NET application searched for students (data elements) in each of
these data sets loaded in the skip list according to several required parameters.

During the first search for students (data elements) in a skip list with 11, 100, 200
and 300 data elements according to 4 (77; 61; 69; 41) and 10 (77; 61; 69; 41; 55;
89; 65; 93; 78; 75) required points for accommodation, we gradually measured the
execution times of the SerialSearchBtnClick serial instance method, the SearchOn-
MultipleThrdsBtnClick threaded instancemethod, theParallelInvokeSearchBtnClick
parallel instance method, and the ParallelForEachSearchBtnClick parallel instance
method using a .NET application.

During the second search for students (data elements) in a skip list with the same
11, 100, 200 and 300 data elements according to 4 (137; 65; 112; 454) and 10 (137;
65; 112; 454; 5; 101; 98; 78; 139; 6) required distances of residence of students from
the university, we used a .NET application to gradually measure the execution times
of the same four instance methods.

The .NET application, which searched for the required data in the skip list and
measured the execution times of particular searches, was running on a computer
with the following basic hardware configuration: Intel Core i5-8250U Processor
(6 MB Cache, 1.60 GHz, 4 GT/s, 4 Cores, 8 Threads), RAM: 8 GB. The Microsoft
Windows 10 Home, 64 bit operating system and the Microsoft .NET Framework 4
were installed on this computer.

One of the outputs of our .NET application displayed in its text box after searching
for students according to 4 required parameters, distances between their residence
and the university: 137; 65; 112; 454 [km] in the skip list with 100 data elements,
is shown in Fig. 8. The same output writes the .NET application into the LogFile.txt
disc file. The .NET application writes the results of other search operations into the
same LogFile.txt file, too.

112 I. Košt’ál

[ISIC surname first name (points for acc.) residence (dist. to univ.) date of the birth]

36104758538294289 Novak Peter (69) Humenne (454) 2000-03-09
36105758538295289 Pelak Peter (70) Humenne (454) 2000-03-10
36106758538296289 Pelak Jan (71) Humenne (454) 2000-03-11
36104278107495531 Sykora Frantisek (77) Dubnica-nad-Vahom (137) 1999-12-06
36072128769834583 Sykora Andrej (77) Dubnica-nad-Vahom (137) 1999-12-05
36105278107496531 Sykora Dezider (78) Dubnica-nad-Vahom (137) 1999-12-07
36073128769835583 Sykora Peter (78) Dubnica-nad-Vahom (137) 1999-12-06
36106278107497531 Sykora Filip (79) Dubnica-nad-Vahom (137) 1999-12-08
36074128769836583 Sykora Roman (79) Dubnica-nad-Vahom (137) 1999-12-07
36107278107498531 Sykora Arpad (80) Dubnica-nad-Vahom (137) 1999-12-09
36075128769837583 Sykora Jakub (80) Dubnica-nad-Vahom (137) 1999-12-08
36100427025140126 Tell Viliam (93) Sturovo (112) 2000-01-01
36130757022430100 Jankovic Jan (75) Piestany (65) 2002-06-04

Search time: 00:00:00.0013853, 1,3853 ms

Fig. 8 The output of our .NET application displayed in its text box after searching for students
according to 4 required parameters, distances between their residence and university: 137; 65; 112;
454 [km] in a skip list with 100 data elements

We calculated the speedups of every parallel instance method using p computing
elements (CPUs) by the following formula

Speedup(p) = Tserial/T (p)

The term Tserial refers to the execution time of the serial version of the given
method.

The execution times of search operations performed by search instance methods
of our .NET application on all four sets of skip lists and speedups of parallel search
instance methods of this application are shown in the following graphs (Fig. 9).

BriefResults Analysis. From the graphs showing execution times of serial, threaded,
and parallel search instance methods and speedups of parallel search instance
methods of the object of our .NET application in dependency on the number of
data elements in a skip list, it is obvious that parallel methods have significantly
shorter execution times and greater speedups at higher numbers of data elements
compared to serial and threaded methods. A significant difference between these
execution times can be seen at the number of data elements 200. Parallel instance
methods achieve the highest speedups when searching in a skip list with 300 data
elements and the smallest speedups (sometime less than 1, which is the deceleration)
when searching in a skip list with 11 data elements.

A Parallelization of Instance Methods of a .NET Application … 113

Fig. 9 The execution times of all search instance methods and speedups parallel search instance
methods performed by our .NET application in the skip list

114 I. Košt’ál

Fig. 9 (continued)

A Parallelization of Instance Methods of a .NET Application … 115

6 Conclusion

From the results of the comparison of the execution times of the serial, threaded, and
parallel search instance methods and speedups of parallel search instance methods
performed by our .NET application in the skip list, it is obvious that parallel instance
methods of the object of this application are able to search required students (data
elements) in a skip list with significantly shorter execution times at higher numbers
of data elements than serial and threaded instance methods of the same object of this
.NET application. From these comparison results, we can also say that for a skip
list with small numbers of data elements containing structured data, e.g., 11 data
elements, the execution efficiency of serial, threaded, and parallel search instance
methods of the object of the .NETapplication is approximately the sameand speedups
of parallel methods are minimal, even sometime they are less than 1. However, if we
use a big number of such data elements in a skip list of a .NET application, 200 or
more, it is a good choice to use parallel search instance methods of the object of this
application to search for required students (data elements) in a skip list.

References

1. Adamchik, V.S.: Linked Lists. http://www.cs.cmu.edu/~adamchik/15-121/lectures/Linked%
20Lists/linked%20lists.html. Accessed 17 July 2021

2. Košťál, I.: Comparison of execution efficiency of the use of a skip list and simple list in a .NET
application. In: Laukaitis, G. (eds.) Recent Advances in Technology Research and Education
Proceedings of the 17th International Conference on Global Research and Education Inter-
Academia – 2018. LNNS, vol. 53, pp. 252–259. Springer, Cham (2019)

3. Microsoft Corporation: Documentation. https://docs.microsoft.com. Accessed 17 July 2021
4. Niemann, T.: Sorting and Searching Algorithms. epaperpress.com (1999)
5. Pugh,W.: Skip lists: a probabilistic alternative to balanced trees. Commun. ACM 33(6), 668–676

(1990)

http://www.cs.cmu.edu/~adamchik/15-121/lectures/Linked%20Lists/linked%20lists.html
https://docs.microsoft.com

	 A Parallelization of Instance Methods of a .NET Application that Search for Required Structured Data Stored in a Skip List
	1 Introduction
	2 A Simple List and a Skip List
	3 Parallel Programming in the .NET Framework
	4 C# .NET Application with Serial, Threaded, and Parallel Instance Methods
	5 Experiment, its Results and their Brief Analysis
	6 Conclusion
	References

