
 

486                                             Finance a úvěr-Czech Journal of Economics and Finance, 61, 2011, no. 5 

JEL Classification: C10, C53, D81, G32 
Keywords: credit scoring, quality indices, lift, profit, normally distributed scores 

How to Measure the Quality  
of Credit Scoring Models* 
Martin ŘEZÁČ – Masaryk University, Brno, Czech Republic (mrezac@math.muni.cz) 

corresponding author 
František ŘEZÁČ – Masaryk University, Brno, Czech Republic (rezac@econ.muni.cz) 

Abstract 
Credit scoring models are widely used to predict the probability of client default. To 
measure the quality of such scoring models it is possible to use quantitative indices such 
as the Gini index, Kolmogorov-Smirnov statistics (KS), Lift, the Mahalanobis distance, 
and information statistics. This paper reviews and illustrates the use of these indices 
in practice. 

1. Introduction 
Banks and other financial institutions receive thousands of credit applications 

every day (in the case of consumer credit it can be tens or hundreds of thousands eve-
ry day). Since it is impossible to process them manually, automatic systems are wide-
ly used by these institutions for evaluating the credit reliability of individuals who 
ask for credit. The assessment of the risk associated with the granting of credit is 
underpinned by one of the most successful applications of statistics and operations 
research: credit scoring. 

Credit scoring is a set of predictive models and their underlying techniques 
that aid financial institutions in the granting of credit. These techniques decide who 
will get credit, how much credit they should get, and what further strategies will en-
hance the profitability of borrowers to lenders. Credit scoring techniques assess the risk 
in lending to a particular client. They do not identify “good” applications and “bad” 
applications (where negative behavior, e.g., default, is expected) on an individual 
basis, but they forecast the probability that an applicant with any given score will be 
“good” or “bad”. These probabilities or scores, along with other business considera-
tions, such as expected approval rates, profit, churn, and losses, are then used as 
a basis for decision making.  

Several modeling methods for credit scoring have been introduced during 
the last six decades. The best known and most widely used are logistic regression, 
classification trees, the linear programming approach, and neural networks. See Hand 
and Henley (1997) or Vojtek and Kočenda (2006) for more details. 

It is impossible to use a scoring model effectively without knowing how ac-
curate it is. First, one needs to select the best model according to some measure of qual-
ity at the time of development. Second, one needs to monitor the quality of the model 
after its deployment into real business. The methodology of credit scoring models 
and some measures of their quality have been discussed in surveys conducted by 
Hand and Henley (1997), Thomas (2000), and Crook at al. (2007). However, until just 
ten years ago, the general literature devoted to the issue of credit scoring was not 
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substantial. Fortunately, the situation has improved in the last decade with the publi-
cation of works by Anderson (2007), Crook et al. (2007), Siddiqi (2006), Thomas et 
al. (2002), and Thomas (2009), all of which address the topic of credit scoring. 

Nevertheless, despite the existence of several recent books and various articles 
in scientific journals, there is no comprehensive work devoted to the assessment of 
the quality of credit scoring models in all their complexity. Because of this, we de-
cided to summarize and extend the known results in this area. We begin with the de-
finition of good/bad clients, then consider each of the most popular indices and their 
expressions for normally distributed scores, generally with unequal variances of scores. 

The most used indices in practice are the Gini index, which is most widely 
used in Europe, and the KS, which is most widely used in North America, despite 
the fact that their use may not be optimal. It is obvious that the best performance of 
a given scoring model needs to be near the expected cut-off value. Hence, we should 
judge quality indices from this point of view. The Gini index is a global measure; 
hence, it is impossible to use it for the assessment of local quality. The same holds 
for the mean difference D. The KS is ideal if the expected cut-off value is near 
the point where the KS is realized. Although information statistics are a global meas-
ure of a model’s quality, we propose using graphs of fdiff and fLR and the graph of their 
product to examine the local properties of a given model. In particular, we can focus 
on the region of scores where the cut-off is expected. Overall, Lift seems to  
be the best choice for our purpose. Since we propose to express Lift by means of 
the cumulative distribution functions of the scores of bad and all clients, it is possible 
to compute the value of Lift for any level of score. 

In this paper, we aim to contribute to current practice by presenting a com-
prehensive, discursive overview of widely used techniques for assessing the quality 
of credit scoring models. Firstly, we discuss the definition of good/bad client, which 
is crucial for further computation. The result of a quality assessment process depends 
greatly on this definition. In the following section we review widely used quality 
indices, including their properties and mutual relationships, and bring some new 
theoretical results connected to them. Especially, it is the expression of Lift by means 
of the cumulative distribution functions of the scores of bad and all clients, and the ex-
pressions of selected indices for normally distributed data, namely, the Gini index 
and Lift in the case of the common variance of scores, and the mean difference D, 
the KS, the Gini index, Lift, and information statistics in the general case, i.e., 
without assuming equality of variances. The normality of scores has to be tested. On 
the other hand, it holds that by using logistic regression with categorical inputs 
transformed as the weight of evidence (a very common way of building up a credit 
scoring model) one obtains scores with distributions very close to the normal. And it 
is clear that once one can accept the assumption of normality of scores, computations 
of quality indices are much more accurate than in the case of using empirical esti-
mates. Finally, applications of all the listed quality indices, including appropriate com-
putational issues, are illustrated in a case study based on real financial data. 

2. Definition of Good/Bad Client 
In fact, the most important step in predictive model building is establish- 

ing the correct definition of dependent variable. In the case of credit scoring, it is 
necessary to precisely define good and bad client. Usually this definition is based on 
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the client’s number of days after the due date (days past due, DPD) and the amount 
past due. We need to set some tolerance level in the case of the past due amount. This 
means that we need to define what is considered as debt and what is not. It may  
be that the client delays payment innocently (because of technical imperfections in 
the system). Also, it makes little sense to regard a small amount past due (e.g., less 
than €3) as debt. In addition, it is necessary to determine the time horizon along 
which the previous two characteristics are tracked. For example, a client is marked 
“good” if he has less than 60 DPD (with a tolerance of €3) in the 6 months from 
the first due date, or if he has less than 90 DPD (with a tolerance of €1) ever. The choice 
of these parameters depends greatly on the type of financial product (there would 
certainly be different parameters for small consumer loans with original maturities of 
around one year, on the one hand, and for mortgages, which are typically connected 
to very large amounts with maturities of up to several tens of years, on the other) and 
on the further use of this definition (credit scoring, fraud prevention, marketing,...). 
Another practical issue with respect to the definition of good client is the accumula-
tion of several agreements. In this case, all amounts past due connected with 
the client at one particular point in time are usually added together and the maximum 
value of days past due is taken.  

In connection with the definition of good client we can generally talk about 
the following types of clients:  
         »  Good             »  Indeterminate                  »  Excluded   
         »  Bad             »  Insufficient                  »  Rejected 

The first two types have been discussed. The third type of client is on the bor-
derline between good and bad clients, and directly affects their definition. If we con-
sider only DPD, clients with a high DPD (e.g., 90+) are typically identified as bad, 
while clients who are not delinquent (e.g., their DPDs are less than 30 or equal to 
zero) are identified as good. Clients are considered to be indeterminate if they are 
delinquent but have not exceeded the given DPD threshold. When we use this type of 
client, then we model very good clients against very bad ones. The result is that we 
obtain a model with amazing predictive power. However, this power dives imme-
diately after assessing the model in the context of the whole population, where 
indeterminates are considered to be good. Thus, the use of this type of client is highly 
suspect and usually does not lead to any improvement in a model’s quality. The next 
type of client is typically a client with a very short credit history, which makes cor-
rect definition of the dependent variable (good/bad client) all but impossible. The ex-
cluded clients are typically clients with significantly misleading data (e.g., fraudsters). 
They are also marked as “hard bad”. The second group of excluded clients consists of 
applicants who belong to a category that will not be assessed by a model (scorecard), 
e.g., VIPs. The meaning of “rejected client” is obvious. See Anderson (2007), Thomas  
et al. (2002) or Thomas (2009) for more details. 

Only good and bad clients are used for further model building. If we do not 
use the indeterminate category, and if we set up some tolerance level for the amount 
past due and resolve the issue with simultaneous contracts, there remain two para-
meters which affect the good/bad definition. They are DPD and time horizon. Usual-
ly it is useful to build up a set of models with varying levels of these parameters. 
Furthermore, it can be useful to develop a model with one good/bad definition and 
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measure the model’s quality with another. It should hold that scoring models de-
veloped on a harder definition (higher DPD, longer time horizon, or measuring DPD 
on first payment) perform better than those developed on softer definitions (Witzany, 
2009). Furthermore, it should hold that a given scoring model performs better if it is 
measured according to a harder good/bad definition. If not, it usually means that some-
thing is wrong. Overall, the development and assessment of credit scoring models on 
a definition that is as hard as possible, but also reasonable, should lead to the best 
performance. 

3. Measuring Quality 
Once the definition of good/bad client and the client’s score are available, it is 

possible to evaluate the quality of this score. If the score is an output of a predictive 
model (scoring function), then we can evaluate the quality of this model. We can 
consider two basic types of quality indices: first, indices based on cumulative distri-
bution functions such as Kolmogorov-Smirnov statistics, the Gini index and Lift; 
second, indices based on likelihood density functions such as mean difference (Maha-
lanobis distance) and informational statistics. For further available measures and 
appropriate remarks see Wilkie (2004), Giudici (2003) or Siddiqi (2006). 

3.1. Indices Based on Distribution Function 
Assume that score s is available for each client and put the following markings: 

                                            

1
0K
, client is good

D
, otherwise

⎧
= ⎨
⎩

 

The empirical cumulative distribution functions (CDFs) of the scores of good 
(bad) clients are given by the relationships 
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where st is the score of the ith client, n is the number of good clients, m is the number 
of bad clients, and I is the indicator function, where I(true) = 1 and I(false) = 0. L is 
the minimum value of a given score, H is the maximum value. We denote the pro-
portion of bad clients by 

B
mp

n m
=

+
 and the proportion of good clients by 

G
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+
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The empirical distribution function of the scores of all clients is given by 

                               
( )

1

1( )
N

N .ALL i
i

F a I s a
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 [ ]a L,H∈                        (2) 

where mnN +=  is the number of all clients. 
An often-used characteristic in describing the quality of the model (scoring 

function) is the Kolmogorov-Smirnov statistic (KS). It is defined as 

                                      [ ]
( ) ( )m,BAD n,GOODa L,H

KS max F a F a
∈

= −                                    (3) 
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Figure 1  Distribution Functions, KS 

                                      
Figure 2  Lorenz Curve, Gini index 

                                        

Figure 1 gives an example of the estimation of distribution functions for good 
and bad clients, including an estimate of the KS statistics. It can be seen, for ex-
ample, that a score of around 2.5 or smaller has a population including approximately 
30% of good clients and 70% of bad clients. 

The Lorenz curve (LC), sometimes confused with the ROC curve (Receiver 
Operating Characteristic curve), can also be successfully used to show the discrimi-
natory power of the scoring function, i.e., the ability to identify good and bad clients. 
The curve is given parametrically by 

                                               
[ ]

( )
( )

m.BAD

n.GOOD

x F a
y F a , a L,H
=

= ∈
 

The definition and name (LC) is consistent with Müller and Rönz (2000). One 
can find the same definition of the curve, but called the ROC, in Thomas et al. 
(2002). Siddiqi (2006) used the name ROC for a curve with reversed axes and LC for 
a curve with the CDF of bad clients on the vertical axis and the CDF of all clients on 
the horizontal axis. For a short summary of currently used credit scoring methods and 
the quality testing thereof by using the ROC on real data with interpretations, see 
Kočenda and Vojtek (2011). 

Each point on the curve represents some value of a given score. If we assume 
this value to be the cut-off value, we can read the proportion of rejected bad and good 
clients. An example of a Lorenz curve is given in Figure 2. We can see that by re-
jecting 20% of good clients, we reject almost 60% of bad clients at the same time. 

A 

B
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In connection with the LC, we will now consider the next quality measure, 
the Gini index. This index describes the global quality of a scoring function. It takes 
values between -1 and 1. The ideal model, i.e., a scoring function that perfectly 
separates good and bad clients, has a Gini index equal to 1. On the other hand, 
a model that assigns a random score to the client has a Gini index equal to 0. Nega-
tive values correspond to a model with reversed meanings of scores. Using Figure 2 
the Gini index can be defined as 

                                                   
2AGini A

A B
= =

+
 

The actual calculation of the Gini index can be made using  

              
( ) ( )1 1

2
1

k k k k

n m
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k

Gini F F F F
− −
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=

⎡ ⎤= − − ⋅ +⎣ ⎦∑
             

(4) 

where 
km.BADF  ( kn.GOODF ) is the kth vector value of the empirical distribution func-

tion of bad (good) clients. For further details see Thomas et al. (2002), Siddiqi (2006) 
or Xu (2003).  

The Gini index is a special case of Somers’ D (Somers, 1962), which is an or-

dinal association measure defined in general as XY
YX

XX

τD
τ

= , where XYτ  is Kendall’s 

aτ  defined as ( ) ( )1 2 1 2XYτ E sign X X sign Y Y= − −⎡ ⎤⎣ ⎦ , where ( )1 1X ,Y , ( )2 2X ,Y  are bi-

variate random variables sampled independently from the same population, and [ ]E ⋅  
denotes expectation. In our case, 1X =  if the client is good and 0X =  if the client  
is bad. Variable Y represents the scores. It can be found in Thomas (2009) that 
the Somers’ D assessing the performance of a given credit scoring model, denoted as 

SD , can be calculated as 

                                          

i j i j
i j i i j i

S
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−
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where ig  ( jb ) is the number of “goods” (“bads”) in the ith interval of scores. Further-
more, it holds that SD  can be expressed by the Mann-Whitney U-statistic in the fol-
lowing way. Order the sample in increasing order of score and sum the ranks of 

goods in the sequence. Let this sum be GR . SD  is then given by 2 1S
UD

n m
= −

⋅
, 

where U is given by ( )1 1
2GU R n n= − + . Further details can be found in Nelsen 

(1998).  
Another type of quality assessment figure available is the CAP (Cumulative 

Accuracy Profile). Other names used for this concept are the Lift chart, the Lift 
curve, the Power curve, and the Dubbed curve. See Sobehart et al. (2000) or Thomas 
(2009) for more details. 
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In the case of the CAP we have the proportion of all clients (FALL) on 
the horizontal axis and the proportion of bad clients (FBAD) on the vertical axis. 
An advantage of this figure is that one can easily read the proportion of rejected bads 
vs. the proportion of all rejected. It is called a Gains chart in a marketing context (see 
Berry and Linoff, 2004). In this case, the horizontal axis represents the proportion of 
clients who can be addressed by some marketing offer and the vertical axis represents 
the proportion of clients who will accept the offer. 

When we use the CAP instead of the LC, we can define the Accuracy Rate 
(AR) (see Thomas, 2009). Again, it is defined by the ratio of some areas. We have  

                           

Area between CAP curve and diagonal
Area between ideal model's CAP and diagonal
Area between CAP curve and diagonal

0 5 1 B

AR

. ( p )

= =

=
⋅ −

 

Although the ROC and the CAP are not equivalent, it is true that the Gini 
index and the AR are equal for any scoring model. The proof for discrete scores is 
given in Engelmann et al. (2003); that for continuous scores can be found in Thomas 
(2009). 

In connection with the Gini index, the c-statistic (Siddiqi, 2006) is defined as 

                                                   

1
2
Ginic _ stat +

=
                                                    

(6) 

It represents the likelihood that a randomly selected good client has a higher 
score than a randomly selected bad client, i.e., ( )1 21 2 1 0K Kc _ stat P s s D D= ≥ = ∧ = . 

It takes values from 0.5, for the random model, to 1, for the ideal model. Other 
names, such as Harrell’s c (Harrell et al., 1996; Newson, 2006), AUROC (Thomas, 
2009) or AUC (Engelmann et al., 2003), can be found in the literature.  

Another possible indicator of the quality of a scoring model is cumulative Lift, 
which states how many times, at a given level of rejection, the scoring model is better 
than random selection (the random model). More precisely, it indicates the ratio of 
the proportion of bad clients with a score of less than a, [ ]a L,H∈ , to the proportion 
of bad clients in the general population.

 

In practice, the calculation is done for Lift 
corresponding to 10%, 20%,..., 100% of clients with the worst score (see Coppock, 
2002). One of the main contributions of this paper is our proposal to express Lift by 
means of the cumulative distribution functions of the scores of bad and all clients 
(expressions (7) and (8)). We define Lift as
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In connection with Coppock’s approach, we define 
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where q represents the score level of 100q% of the worst scores and 1 ( )N .ALLF q−  can 
be computed as { }1 ( ) [ ] ( )N .ALL N .ALLF q min a L,H , F a q− = ∈ ≥ . Since the expected rejec-
tion rate is usually between 5% and 20%, q is typically assumed to be equal to 0.1 
(10%), i.e., we are interested in the discriminatory power of a scoring model at the point 
of 10% of the worst scores. In this case we have ( )1

10 10 (0 1% n.BAD N .ALLLift F F . )−= ⋅  

3.2. Indices Based on Density Function 
Let Mg and Mb be the means of the scores of good (bad) clients and Sg and Sb 

be the standard deviations of good (bad) clients. Let S be the pooled standard devia-

tion of good and bad clients, given by 

1
2 2 2

g bnS mS
S

n m

⎛ ⎞+
⎜ ⎟=
⎜ ⎟+⎝ ⎠

. Estimates of the mean 

and standard deviation of the scores for all clients ( )ALL ALLμ ,σ  are given by 

                                             
g b

ALL
nM mM

M M
n m
+

= =
+

  

                         

( ) ( )
( )

1
2 2 22 2

g b g b
ALL

nS mS n M M m M M
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⎝ ⎠

 

The first quality index based on the density function is the standardized dif-
ference between the means of the two groups of scores, i.e., the scores of bad and 
good clients. This mean difference, denoted by D, is calculated as 

                                                      

g bM M
D

S
−

=  

Generally, good clients are supposed to get high scores and bad clients low 
scores, so we would expect that Mg>Mb, and, therefore, that D is positive. Another 
name for this concept is the Mahalanobis distance (see Thomas et al., 2002). 

The second index based on densities is the information statistic (value) valI , 
defined in Hand and Henley (1997) as 

                               
( ) ( )
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val GOOD BAD
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f x
I f x f x ln dx

f x

∞

−∞

⎛ ⎞
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∫
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We propose to examine the decomposed form of the right-hand side of the ex-
pression. For this purpose we mark  

                                            
( ) ( )diff GOOD BADf f x f x= −

 

                                              

( )
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f x
f ln

f x
⎛ ⎞
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Although the information statistic is a global measure of a model’s quality, 
one can use graphs of fdiff and fLR and the graph of their product to examine the local 
properties of a given model (see section 4 for more details). 



 

494                                             Finance a úvěr-Czech Journal of Economics and Finance, 61, 2011, no. 5 

We have two basic ways of computing the value of this index. The first way is 
to create bins of scores and compute it empirically from a table with the counts of 
good and bad clients in these bins. The second way is to estimate unknown densities 
using kernel smoothing theory. Consequently, we compute the integral by a suitable 
numerical method. 

Let’s have m score values 0 1,is , i ,...,m=  for bad clients and n score values 

1 1, js , j ,...,n=
 
for good clients and recall that L denotes the minimum of all values 

and H the maximum. Let’s divide the interval [L,H] into r equal subintervals [q0, q1], 
(q1, q2],…(qr-1, qr], where q0 = L, qr = H. Set 

              
( ) ( )0 0 1 1 1 1

1 1
1( ] ( ]

m n

,k ,i k k ,k , j k k
i j

n I s q , q , n I s q , q , k ,...,r− −
= =

= ∈ = ∈ =∑ ∑  

as the observed counts of bad and good in each interval. Then, the empirical in-
formation value is calculated by 
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(10) 

Choosing the number of intervals is also very important. In the literature and 
also in many applications in credit scoring, the value r = 10 is preferred. An ad-
vanced algorithm for interval selection can be found in Řezáč (2011).  

Another way of computing this index is by estimating appropriate densities 
using kernel estimations (Wand and Jones, 1995). Consider ( )GOODf x  and ( )BADf x  to 
be the likelihood density functions of the scores of good and bad clients, respectively. 
The kernel density estimates are defined by 

                                         
( )11 1
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xK x K
h h
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⎝ ⎠
, i = 0,1, and K is some kernel function, e.g., the Epane-

chnikov kernel. Bandwidth hi can be estimated by the maximal smoothing principal 
(see Terrel, 1990, or Řezáč, 2003) or by cross-validation techniques (see Wand and 
Jones, 1995).  

As the next step, we need to estimate the final integral. We use the composite 
trapezoidal rule. Set 
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Then, for given M+1 equidistant points L = x0,…,xM = H we obtain 
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The value of M is usually set between 100 and 1,000. As one has to trade off 
between computational speed and accuracy, we propose using M = 500. For further 
details see Koláček and Řezáč (2010). 

3.3. Some Results for Normally Distributed Scores 
Assume that the scores of good and bad clients are each approximately nor-

mally distributed, i.e., we can write their densities as 
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The values of Mg, Mb, and Sg, Sb, can be taken as estimates of μg, μb, and  
σg, σb,. Finally, we assume that standard deviations are equal to a common value σ. In 
practice, this assumption should be tested by the F-test. 

The mean difference D (see Wilkie, 2004) is now defined as g bμ μ
D

σ
−

=
 
and 

is calculated by 
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D
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                                    (12) 

The maximum difference between the cumulative distributions, denoted KS 
before, is calculated, as proposed in Wilkie (2004), at the point where the distribu-
tions cross, halfway between the means. The KS value is therefore given by 
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where ( )Φ ⋅  is the standardized normal distribution function. We derived a formula 
for the Gini index. It can be expressed by 
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The computation for Lift statistics is quite easy. Denoting 1( )Φ − ⋅  as the stand-
ard normal quantile function we have 
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q G
SLift q p D

q S
Φ Φ −⎛ ⎞= + ⋅⎜ ⎟
⎝ ⎠                                  

(15) 

This expression (15), as well as (14), is specific to this paper. A couple of fur-
ther interesting results are given in Wilkie (2004). One of them is that, under our as-
sumptions concerning the normality and equality of standard deviations, it holds that 

                                                            
2

valI D=                                               (16) 

We derived expressions for all the mentioned indices in the general case, i.e., 
without assuming equality of variances. This means that the following expressions 
(17) to (21) are specific to this paper and cannot be found in the literature. The mean 
difference is now in the form 
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                                                           2 *D D=                                                      (17) 
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The Gini coefficient can be expressed as 

                                                      ( )2 1*G DΦ= ⋅ −                                                (19) 

Lift is given by the formula 
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Finally, the information statistic is given by  

                                             ( ) 21 1*
valI A D A= + + −                                            (21) 

where 
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; in computational form it is
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. For this index, 

one can find a similar formula in Thomas (2009). To explore the behavior of expres-
sions (12)–(21) it is possible to use the tools offered by the Maple system. See Hře-
bíček and Řezáč (2008) for more details. Further comments on the behavior of 
the listed indices can be found in Řezáč and Řezáč (2009). 

4. Case Study 
Applications of all the listed quality indices, including appropriate computa-

tional issues, are illustrated in this case study. Based on real financial data, we aim to 
provide computations with a commentary and to note what might be computational 
issues and what might be appropriate interpretation of the results obtained. First, we 
describe our data, including basic statistical characteristics and box plots. Then we 
test the normality of our data (Q-Q plot, Lilliefors test for subsamples) and the equal-
ity of the standard deviation (F-test). After that we provide figures and indices based 
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Figure 3  Box Plot of Scores of Good and Bad Clients  

                                
Table 1  Basic Characteristics 

Mg Mb M Sg Sb S 
2.9124 2.2309 2.8385 0.7931 0.7692 0.7906 

 
on the cumulative distribution function, i.e., the CDF, the Lorenz curve, the CAP, 
the KS, the Gini index and Lift. Subsequently, we estimate the likelihood densities, 
compute the mean difference and information statistics, and discuss the curves which 
are used for the computation of the information statistics. Finally, we focus on the profit 
that a firm can make. We estimate this profit according to the quality indices ob-
tained and according to a set of portfolio parameters. 

All numerical calculations in this section are based on scoring data provided 
by a financial company operating in Central and Eastern Europe1 providing small- 
and medium-sized consumer loans. Data were registered between January 2004 and 
December 2005. To preserve confidentiality, the data were selected in such a way as 
to provide heavy distortion in the parameters describing the true solvency situation  
of the financial company. The examined data set consisted of 176,878 cases with two 
columns. The first one showed a score (the outcome of the application of the credit 
scoring model based on logistic regression) representing a transformed estimate of 
the probability of being a good client, and the second showed an indicator of wheth-
er a client was “good” or “bad” (defaulted 90 DPD ever). The number of bad clients 
was 18,658, which means a 10.5% bad rate. Table 1 and Figure 3 give some basic char-
acteristics. 

In each box, the central mark is the median, the edges of the box are the 25th 
and 75th percentiles, the whiskers extend to the most extreme data points not con-
sidered outliers, and outliers are plotted individually. 

Because we wanted to use the results for normally distributed scores, we 
needed to test the hypothesis that data come from a distribution in the normal family. 
Q-Q plots (see Figure 4) show that the distributions of the given scores were quite 
similar to the normal one. With a very large sample size (which was our case), a nor-
mality test may detect statistically significant but unimportant deviations from normal-
ity. Unless the Q-Q plot indicates a source for the nonnormality, the normality test 
result may not be useful in this case. For that reason, we decided to take the Q-Q 
plots as proof of normality. Furthermore, when we took 10,000 random subsamples 
of length 100 for each score group and saved the results of the Lilliefors test (Lil- 
 

1 The financial institution does not wish to be explicitly identified and we respect this wish, as according to 
the contract to obtain the data. 
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Figure 4  Q-Q Plots for Scores of Good and Bad Clients 
                     Figure 4a                                        Figure 4b 

                   
Figure 5  
        (a) Cumulative Distribution Functions    (b) Lorenz curve 

              
   
liefors, 1967) at the 5% significance level, in around 94% of cases the test confirmed 
normality (in the case of bad client scores and good client scores as well). 

Furthermore we needed to test that the standard deviations σg, σb, are equal. 
Using the F-test at the 5% significance level, this hypothesis was not rejected. More 
precisely, the p-value was equal to 0.186, the value of the test statistic was equal to 
1.063, and the 95% confidence interval for the true variance ratio was [0.912, 1.231]. 
According to this result, we could use the expressions (12) to (16), i.e., the expres-
sions assuming equality of variances. Generally, if the F-test rejects the hypothesis, 
then one should use expressions (17) to (21). 

We obtain the first insight into the discriminatory power of the score if we use 
the graph of the cumulative distribution functions of bad and good clients (see 
Figure 5a). The KS statistic derived from this figure was equal to 0.3394. The value 
of the score at which it was achieved was equal to 2.556. Using the results for nor-
mally distributed data, it turned out that the KS was equal to 0.3335. 

Figure 5b shows the Lorenz curve computed from our data set. It can be seen, 
for example, that by rejecting 20% of good clients, we reject 50% of bad clients at 
the same time. The Gini index was equal to 0.4623 and the c-statistic was equal to 
0.7311. Using the expression for normally distributed data, the Gini index was equal 
to 0.4578. The c-statistic was equal to 0.7289 in this case. 

The CAP for our data is displayed in Figure 6. The ideal model is now repre-
sented by the polyline from [0, 0] through [pB, 1] to [1, 1]. We can easily read the pro-
portion of rejected bads vs. the proportion of all rejected. For example, we can see that  
if we want to reject 70% of bads, we have to reject about 40% of all applicants. 



 

Finance a úvěr-Czech Journal of Economics and Finance, 61, 2011, no. 5                                        499 

Figure 6  CAP 

                                  

Table 2  Absolute and Cumulative Lift – Computational Scheme 

absolutely cumulatively 
decile # clients # bad  

clients Bad rate abs. Lift 
# bad  

clients Bad rate cum. Lift 
1 17688 5233 29.6% 2.80 5233 29.6% 2.80 
2 17688 3517 19.9% 1.88 8750 24.7% 2.34 
3 17641 2239 12.7% 1.20 10989 20.7% 1.96 
4 17735 1879 10.6% 1.00 12868 18.2% 1.72 
5 17688 1810 10.2% 0.97 14678 16.6% 1.57 
6 17688 1315 7.4% 0.70 15993 15.1% 1.43 
7 17688 1077 6.1% 0.58 17070 13.8% 1.31 
8 17687 723 4.1% 0.39 17793 12.6% 1.19 
9 17688 461 2.6% 0.25 18254 11.5% 1.09 
10 17687 404 2.3% 0.22 18658 10.5% 1.00 
All 176878 18658 10.5%    

 
Table 3  Absolute and Cumulative Lift 

% rejected (FALL) 
  

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 
abs. Lift 2.25 1.88 1.20 1.00 0.97 0.70 0.58 0.39 0.25 0.22 
cum. Lift 2.80 2.34 1.96 1.72 1.57 1.43 1.31 1.19 1.09 1.00 
cum.Lift_norm 2.90 2.30 1.97 1.74 1.56 1.42 1.29 1.19 1.09 1.00 

 
The last-mentioned indicator of a scoring model’s quality based on a distribu-

tion function was Lift. Let’s demonstrate the procedure for computing this index. We 
sorted customers according to the score and split them into ten groups using deciles 
of the score. Then we counted the number of bad clients in each group, in our case 
around 17,688 clients. This yielded their proportion in the group (the Bad Rate). Ab-
solute Lift in each group was then given by the ratio of the share of bad clients in 
the group to the proportion of bad clients in total. Cumulative Lift was given by 
the ratio of the proportion of bad clients in groups up to the given group to the pro-
portion of bad clients in total. The results are presented in Table 2. 

Table 3 contains values of absolute and cumulative Lift corresponding to se-
lected points on the rejection scale. It is common to focus on the cumulative Lift 
value at 10% on this scale. In our case it was 2.80, which means that the given 
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Figure 7  Absolute and Cumulative Lift 

                                     
Figure 8  Density Functions 

                                        
 
scoring model was 2.8 times better than the random model at this level of rejection. 
Values in the last row of the table are computed by assuming normality. Figure 7 
shows the Lift values on the whole rejection scale.  

Estimates of the densities of bad and good clients are shown in Figure 8. 
The thick lines represent kernel estimations, with the bandwidth based on the maxi-
mal smoothing principle. The thin lines are the densities of the normally distributed 
scores with parameters equal to Mb, Sb, and Sg, Mg,, respectively. It can be seen that, 
in both cases, the intersection of the densities of bad and good clients was approxi-
mately equal to 2.56, which was the value of the score where the KS was achieved.  

The mean difference D was equal to 0.8620. Figures 9 and 10 show 
the shapes of curves fdiff, fLR, and fdiff, fLR, which are used for the computation of 
information statistics. The first one is based on the kernel estimation of density func-
tions using the maximal smoothing principle. Figure 10 is based on the parametrical 
estimation of densities assuming normality of scores.  

We can see that curves fdiff, fLR have three points of intersection. The middle 
point is the point of intersection of our densities, i.e., where fGOOD = fBAD holds, and, 
further, it is the point where fdiff, fLR 

is equal to zero. As we can see, the curve fdiff, fLR 
has two peaks. Generally, when variances differ enough, we can have two “middle” 
points and three peaks, but this is not our case. Since the information statistic is 
the integral of fdiff, fLR, we can easily examine the local properties of a model. It is 
obvious that the higher left peak of fdiff, fLR 

means a stronger model for the area of 
low scores, i.e., the area of bad clients, and vice versa. In our case, we can see in 
Figures 9 and 10 that our model is very slightly better for higher scores. However, 
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Figure 9  Kernel Based fdiff, fLR, and fdiff, fLR  

            
Figure 10  fdiff, fLR, and fdiff, fLR Based on Normally Distributed Densities 

             

Table 4  Informational Statistics 

decile # cleints # bad 
clients #good % bad 

[1] 
% good 

[2] 
[3] = 

= [2] - [1]
[4] = 

= [2] / [1]
[5] =  

= ln[4] 
[6] =  

= [3] * [5] 

1 17688 5233 12455 28.0% 7.9% -0.20 0.28 -1.27 0.26 
2 17688 3517 14171 18.8% 9.0% -0.10 0.48 -0.74 0.07 
3 17641 2239 15402 12.0% 9.7% -0.02 0.81 -0.21 0.00 
4 17735 1879 15856 10.1% 10.0% -0.00 1.00 -0.00 0.00 
5 17688 1810 15878 9.7% 10.0% 0.00 1.03 0.03 0.00 
6 17688 1315 16373 7.0% 10.3% 0.03 1.47 0.38 0.01 
7 17688 1077 16611 5.8% 10.5% 0.05 1.82 0.60 0.03 
8 17687 723 16964 3.9% 10.7% 0.07 2.77 1.02 0.07 
9 17688 461 17227 2.5% 10.9% 0.08 4.41 1.48 0.12 
10 17687 404 17283 2.2% 10.9% 0.09 5.04 1.62 0.14 

All 176878 18658 158220  Info. 
Value 0.7120 

 
the difference is so small that we can state that the model has practically the same 
strength for low and high scores. 

Now we will demonstrate the computational scheme for informational statis-
tics in the case of discretized data. We sorted customers according to score and split 
them into ten groups using deciles of the score. Then we counted the number of all, 
bad, and good clients in each group. The results are in Table 4. 

The second, third, and fourth columns contain the counts of all, bad, and good 
clients. The next two columns, [1] and [2], contain the relative frequencies of bad and 
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Figure 11  fdiff, fLR, and fdiff, fLR Based on Empirical Computation 

          
 
good clients in each score interval. The last four columns, [3] to [6], represent mathe-
matical operations employed in (10). Adding the last column [6], we get the infor-
mation value.  

Computed empirically, with the 10 bins corresponding to the divisions using 
the deciles of the score, the information statistic was equal to 0.7120. It was 0.7431 
using the result for normally distributed data, i.e., 2

valI D= . When the fdiff  fLR curve 
is used, i.e., when Ival is computed numerically as the area under this curve, then 
the result was 0.7109 (in the case of the kernel estimate) and 0.7633 (in the case of 
the parametrical estimate).  

Parts a) and b) of Figure 11 are the last figures we will examine. Similarly to 
the previous two figures, we are interested in fdiff, fLR 

and fdiff, fLR. Figure 11a is 
a graphical representation of the values in column [3] and [5] in Table 4. At first 
sight, the curves seem to be very different from the curves in Figure 9. As we can 
see, both curves are increasing. This is what we expect in the case of fLR. The in-
crease in this quantity means an increase in the natural logarithm of the ratio of 
the densities of the scores of good and bad clients. Because the natural logarithm is 
a continuous increasing function, it means an increase in the ratio itself. Indeed, it 
means that with increasing score we have an increasing proportion of good clients, 
which is our case. The increase of fdiff is once again what we expected. Again, it means 
that we have higher density values for bad clients for low scores, i.e., for low, but 
fixed, scores we have a higher probability of a client being bad compared to the prob-
ability of a client being good; and we have higher density values for good clients for 
high scores, i.e., for high, but fixed, scores we have a higher probability of a client 
being good compared to the probability of a client being bad. The main difference 
compared to Figure 9 is the behavior near the boundaries of the scores, i.e., near 
the minimum and maximum values of the scores. The reason for this behavior is 
quite simple. Because the number of scores near these boundaries is very small, and 
because the empirical approach works with deciles, the first and last empirically 
computed value of fdiff is, in fact, an average which smooths the appropriate parts of 
fdiff  in Figure 9. Finally, we must mention the fact that both curves intersect when 
the score is approximately equal to 2.56, which is the point at which the densities of 
the scores also cross. 

Figure 11b is a graphical representation of column [6] in Table 4. We can see 
that the curve of fdiff fLR touches zero when the score is around 2.5. In contrast to 
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Figure 9, we can also see that the curve of fdiff fLR has a U shape without falls to zero 
around the boundaries of the scores. Again, as for Figure 11a, it holds that the first 
and last empirically computed value of fdiff fLR is, in fact, an average which smooths 
the appropriate parts of fdiff fLR in Figure 9. Finally, the cumulative values of fdiff fLR are displayed in Figure 11b.  

Now, it is natural to ask what is the financial impact of all these computations 
and indices. It is clear that one should have knowledge (or at least a feeling) about 
the financial impact to be able to decide what the worthiness of a credit scoring model  
is. To compute the profit which a firm can make, one would need to know the full 
financial data, especially the credit amount, the term, the interest rate, the recovery 
rate, the recovery costs, and the initial/fixed costs per credit. Despite the fact that we 
did not have these data, we estimated the profit using some simplifying assumptions. 
We considered the number of credit proposals to be 150,000 per year, the reject rate 
(RR) to be 40%, and the average default rate (DR) to be 10.5%. All of these corre-
spond to data examined in the case study. Furthermore, we considered that the aver-
age gain resulting from rejecting a bad client (saved loss) in favor of accepting a good 
client (earned interest) was €300. For further comparison we considered the number 
of proposals to be 450,000 per year, the reject rate to be 20%, and the gain to be 
€1,500. 

We needed to estimate the number of bad clients who could be rejected by 
a credit scoring model in addition to rejecting without any model, but with the same 
reject rate. Because LiftRR (i.e., Liftq given by (8), with q = RR, where RR is the reject 
rate) is defined as the ratio of the proportion of bad clients below a given rejection 
level (RR) to the proportion of bad clients in the general population, and given our 
assumptions, we are able to estimate the desired number of bad clients. Then, be-
cause we know the gain resulting from rejecting a bad client in favor of accepting 
a good client, we can estimate the profit resulting from using a credit scoring model. 
We propose to compute the profit by 

                                  ( 1)RRprofit # proposals DR RR Lift gain= ⋅ ⋅ ⋅ − ⋅                          (22) 

Table 5 contains estimates of the profit for the credit scoring model examined 
in this case study. Furthermore, it contains profits for other considered portfolio para-
meters. Moreover, a comparison of the values of the selected quality indices (with 
the assumption of normality and equality of variances) can be found there too. 
The bold row corresponds to the model from this case study, the three rows above cor-
respond to models with worse quality, and the last three rows correspond to models  
with higher performance, i.e., higher values of the quality indices and higher profits.  

Firstly, we can see in Table 5 that a firm with 150,000 credit proposals per 
year, a 40% reject rate, and a €300 gain per credit can earn approximately €1.4M per 
year when using the given credit scoring model compared to the case of using no 
model. Secondly, we can see that improving a model, by means of improving 
the quality indices, leads to a situation where a smaller reject rate results in a higher 
profit. And finally, we can see that a firm with an only three times bigger portfolio 
and five times higher gain per credit, i.e., 450,000 proposals per year and €1,500 per 
credit, and with an excellent model can increase its profit by more than €32M per 
year, which is quite a noticeable amount of money. Compared with the costs of 
developing a new credit scoring model, which are around 200 man days (including 
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Table 5  Saved Profit According to Quality Indices 

Quality indices 

D KS Gini c_stat Lift10% Lift20% Lift40% Ival 
0.2500 0.0995 0.1403 0.5702 1.4422 1.3376 1.2197 0.0625 
0.5000 0.1974 0.2763 0.6382 1.9794 1.7156 1.4395 0.2500 
0.7500 0.2923 0.4041 0.7021 2.5987 2.1187 1.6489 0.5625 
0.8620 0.3335 0.4578 0.7289 2.8977 2.3028 1.7370 0.7430 
1.0000 0.3829 0.5205 0.7602 3.2801 2.5294 1.8391 1.0000 
1.2500 0.4680 0.6232 0.8116 3.9988 2.9304 2.0041 1.5625 
1.5000 0.5467 0.7112 0.8556 4.7287 3.3068 2.1406 2.2500 

 

Portfolio parameters (in €) 

proposals: 150 000/year prop.: 450 000/year 

gain: 300 € /credit gain: 1500 € /credit gain: 1500 € /credit 

RR: 40% RR: 20% RR: 40% RR: 20% RR: 40% RR: 20% 

Profit (in €) 
   415 318    319 019 2 076 589 1 595 095   6 229 766   4 785 284 
   830 718    676 264 4 153 588 3 381 320 12 460 764 10 143 959 
1 226 474 1 057 182 6 132 369 5 285 909 18 397 106 15 857 726 
1 392 838 1 231 152 6 964 189 6 155 762 20 892 566 18 467 285 
1 585 984 1 445 248 7 929 919 7 226 240 23 789 757 21 678 719 
1 897 678 1 824 194 9 488 388 9 120 970 28 465 165 27 362 911 
2 155 813 2 179 903 10 779 067 10 899 516 32 337 201 32 698 548 

 
development, testing, and deployment), this represents about €20K (in Eastern Eu-
rope), so it is obvious that these expenses are in fact negligible and the resulting profit 
is really considerable. 

Furthermore, one can compare the values of the expected profit within the col-
umns as well as within the rows in Table 5. This means that it is possible to compare 
the profit of the different portfolios provided by a credit scoring model with a given 
quality. But one can also compare the profit for a given portfolio according to the qual-
ity of the credit scoring model. For instance, if a firm with 150,000 credit proposals 
per year, a €300 gain per credit, and a 40% reject rate enhances the model and its 
Gini index increases from 0.4578 to 0.5205 (i.e., an increase of 0.06, which is an im-
provement of approximately 14%), the expected profit is approximately €193K per 
year (€1,585,984 minus €1,392,838). The typical potential for improving the Gini 
index is between 10% and 20% in the case of scoring models for consumer credit, 
provided that the redevelopment is carried out once or twice a year, which is usual- 
ly the optimal time period. If a firm has credit-scoring-model development costs of 
around €20K, obviously it is profitable to redevelop the model and to maintain its 
quality, in the sense of the listed indices, at as high a level as possible.  

5. Conclusions  
We considered DPD and time horizon to be the crucial parameters affecting 

the definition of good/bad client. Issues relating to indeterminate clients were also 
discussed. However, in the light of this discussion we concluded that this category 
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should not be used at all. Finally, the dependence of a scoring model’s performance 
on the definition was discussed. On the basis of this discussion, we suggested using 
a definition which is as hard as possible, but also reasonable, e.g., 90 DPD ever, or 
90 DPD on the first payment. 

We derived a formula for the Lift curve based on the ratio of the cumulative 
distribution functions of the scores of bad and all clients. This allows the value of 
Lift for any given score to be calculated. On the other hand, it is much more useful to 
know the value of Lift corresponding to some quantile of a score. Because of this, we 
proposed the quantile form of Lift. Despite the high popularity of the Gini index and 
the KS, we conclude that Lift and figures of decomposed information statistics are 
more appropriate for assessing the local quality of a credit scoring model. In par-
ticular, it is better to use them in the case of an asymmetric Lorenz curve. Using 
the Gini index or KS during the development process could lead to the selection of 
a weaker model in this case. 

Known formulas for mean difference, the KS and information statistics were 
supplemented with formulas for the Gini index and Lift in the case of normally 
distributed scores with common variance. Afterwards, we did not assume equality of 
standard deviations and derived expressions for all the mentioned indices in general. 
The behavior of these indices was illustrated in appropriate figures. We should re-
alize that all the listed indices are estimations of appropriate random statistics, whose 
exact values are unknown. Despite the fact that the scores of credit scoring models 
are not usually exactly normally distributed, they are often very close to this distribu-
tion. In this case, we suggest using the expressions from this paper, because we ob-
tain more accurate estimates. 

The case study demonstrated the use of the discussed indices, highlighted 
some computational issues, and presented possible interpretations. It is clear that 
a financial institution has to use quality indices of credit scoring models that are as 
accurate as possible. In the case of monitoring or reporting usage, this can support 
more accurate decision making. In the case of selection of the credit scoring model to 
be deployed, the economic impacts are obvious. With a better model, a company can 
acquire less risky clients into its portfolio. Better business profitability is the direct 
consequence. But if one has a wrong estimate of the quality of a credit scoring model, 
then one can easily choose the wrong model to be deployed. In this case, more risky 
clients and lower profitability are the direct consequences. It is clear that empirical 
expressions of the quality indices can be used every time. But, if one can accept the as-
sumption of normality of scores, then using expressions (12) to (16) results in more 
accurate estimates of the quality indices. Moreover, if the assumption of equality of 
the variances of scores cannot be proved, and the assumption of normality is proved, 
then expressions (17) to (21) should lead to the most accurate estimates of the quality 
indices. There is no general rule that tells us the right value of a given quality index. 
This value is specific to country, product, and type of scoring (application/behav-
ioral/other). Very roughly, we can expect higher values of quality indices in emerg-
ing countries, for more risky products, and for behavioral models. Finally, it was 
shown how to estimate the financial impact of using a credit scoring model, and that 
the amount saved by a financial institution may be really significant.  

Although it may seem that most issues relating to the measurement of the qual-
ity of credit scoring models have been resolved, many questions for further research 
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still remain. For instance, what is the effect of the type of inputs into a model (con-
tinuous, categorized, WOE,…) and the type of model (logistic regression, NN, Trees,…) 
on the degree of asymmetry of the Lorenz curve? How does the theoretical distribu-
tion of scores depend on the type of inputs and type of model? And what is the con-
fidence band of the Lift curve? Last but not least, an important further goal of 
research in this area will be to generalize the expressions presented in section 3.4 so 
as to make them applicable to a more general class of distributions, such as gener-
alized gamma or generalized beta distributions. 
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