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Abstract

One of the approaches for forecasting future values of a time series or unknown spatial data is kriging. 
The main objective of the paper is to introduce a general scheme of kriging in forecasting econometric time 
series using a family of linear regression time series models (shortly named as FDSLRM) which apply regression 
not only to a trend but also to a random component of the observed time series. Simultaneously performing 
a Monte Carlo simulation study with a real electricity consumption dataset in the R computational language 
and environment, we investigate the well-known problem of “negative” estimates of variance components 
when kriging predictions fail. Our following theoretical analysis, including also the modern apparatus of ad-
vanced multivariate statistics, gives us the formulation and proof of a general theorem about the explicit form 
of moments (up to sixth order) for a Gaussian time series observation. This result provides a basis for further 
theoretical and computational research in the kriging methodology development.4
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Introduction
Data of many economic, financial, insurance or business variables can be generally considered as time 
series datasets – sets of observations tracking the same type of information at multiple points in time. 
Modern time-series econometrics, representing an interconnection of mathematical, statistical and 
computer methods, allows us to model, forecast, interpret and describe various real phenomena dealing 
with these types of data (Andersen et al., 2009; Box et al., 2008; Brockwell and Davis, 2006; Cipra, 2013;  
Enders, 2014; Tsay, 2010). Last twenty-five years brought notable advances in the time-series economet-
rics (Escobari, Ngo, 2014) and moreover, its applications and tools led to several Nobel Prize Awards 
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in Economics – namely R. S. Shiller, E. F. Fama and L. P. Larsen in 2013, Ch. A. Sims in 2011 as well 
as R. F. Engle III and C. W. J. Granger in 2003.

One of the most important areas of time series theory application is the forecasting which solves 
a task how to predict future values of a time series from its current and past values (Hyndman and Atha-
nasopoulos, 2014). From a practical point of view, information obtained by forecasting provides a crucial 
knowledge for effective and efficient planning or decision making. The Box-Jenkins methodology (Box 
et al., 2008; Cipra, 2013; Enders, 2014; Tsay, 2010), belonging to the most popular methodologies for 
modeling and forecasting econometric time series data (see current real econometric applications e.g. in 
Pošta, Pikhart, 2012; Salamaga, 2015; Šimpach, 2015) is based fundamentally on ARMA, ARIMA models  
or their vector counterparts (VARMA, VARIMA). But there exist other advanced and powerful forecasting 
alternatives such as exponential smoothing methods (Cipra, 2013; Hyndman and Athanasopoulos, 2014), 
neural networks models (Andersen et al., 2009; Crone et al., 2011; Fomby and Terrell, 2006), linear regres-
sion models (Brockwell and Davis, 2006; Chatterjee and Hadi, 2012; Cipra, 2013; Enders, 2014; Štulajter, 
2002) or dynamic regression models (Pankratz, 1991; Shumway and Stoffer, 2011).

The prediction theory using linear regression models called kriging (Christensen, 2001; Cressie and 
Wikle, 2011; Moore, 2001; Stein, 1999; Štulajter, 2002) represents a process of finding the optimal linear 
prediction for random processes or random fields.  The process is based on modeling in an appropriate 
general class of linear regression models where the following analytical or numerical optimization finds 
out the best unbiased linear predictor (BLUP) on a set of all linear unbiased predictors. The optimization 
criterion is a minimization of the mean squared error (MSE) among considered predictors.

Finally it is worth to mention that although the kriging was originally developed for predictions 
in spatial data (geostatistics and meteorology, Cressie, 1993), the idea of the BLUP brings fruitful results 
in a much broader set of problems (Harville, 2008; Murphy, 2012; Rao and Molina, 2015; Robinson, 1991), 
e.g. small-area estimation in economics, the prediction of breeding values in genetics, the estimation 
of treatment contrasts (e.g. in drug development, agriculture or manufacturing), the analysis of longitu-
dinal data, insurance credibility theory, noise removing from images or machine learning. 

Our paper deals with an application of kriging in forecasting econometric time series. Since kriging 
is not well-known in econometric journals and literature, the first section summarizes a general frame-
work how the kriging methodology works. To not be distracted by many technical details and to focus 
on main ideas, we illustrate each step of kriging using a real econometric time series dataset dealing with 
electricity consumption, and reducing the number of used formulas as much as possible (an interested 
reader will find explicit references for all data and formulas). The illustrative example brings us natu-
rally to a problem of a kriging failure when standard computational methods dealing with considered 
estimates of nonnegative variance parameters give us negative values. The second section continues in 
this generally well-known estimation problem. Here we numerically manifest the practical commonness 
(non-rareness) of this situation by a simulation study numerically quantifying a relative occurrence of 
explored cases. In the final third section of the paper, we analyze the mentioned problem in the broader  
context of theoretical developments in kriging methodology using appropriate advanced methods 
of multivariate statistics. Our analysis results in the formulation and proof of a general theorem about 
the explicit form of moments for a Gaussian time series observation.

As for numerical calculations, we carried out our computational research producing final results (tables 
and figures) of the paper in the R statistical computing language (<https://www.r-project.org>; Cham-
bers, 2008; R Development Core Team, 2016) in a powerful integrated development environment called 
RStudio (<https://www.rstudio.com>; Verzani, 2011). At present, the free and open source R computa-
tional environment rapidly improves its capabilities (now there are almost 10 000 statistical packages) 
which R ranks as one of the best statistical tools for the high-quality computational time series research 
(McLeod et al., 2012).
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1 FORECASTING TIME SERIES USING KRIGING
Forecasting time series within the framework of kriging consists of the following stages (Christensen, 
2001; Stein, 1999; Štulajter, 2002): (i) selecting sufficiently general and broad class of linear regression 
models; (ii) obtaining an empirical realization of a given time series and its modeling; (iii) choosing pre-
dicted time series values and finding the BLUP for them; (iv) estimating model parameters on which the 
BLUP depends and using empirical (“plug-in”) BLUP; and finally (v) exploring the impact of the esti-
mation on properties, especially mean squared error, of the BLUP. Let us briefly illustrate this scheme in 
the case of a real econometric dataset which also brings us naturally to our research problem. 

1.1 The first stage – a general class of models
As we mentioned above, in the first stage of kriging we select some general class of linear regression  
models. In our research, we are concerned with the so-called finite discrete spectrum linear regression 
models (FDSLRM) – a class of time series models whose mean values (trend) are given by linear regres-
sion and random components (error terms) are a linear combination of uncorrelated zero-mean ran-
dom variables and white noise, which together can be interpreted in terms of finite discrete spectrum 
(Priestley, 2004). 

This parametric family of time series models, a direct extension of classical regression models 
with many practical applications, was introduced in 2002–2003 by Štulajter (2002, 2003). Especially 
the monograph from 2002 focusing on forecasting econometric time series in terms of kriging has started 
a mathematical and statistical research of FDSLRM dealing with its properties and applications (Hančová, 
2008, 2011; Hančová et al., 2015; Harman and Štulajter, 2010; Štulajter, 2007; Štulajter and Witkovský, 
2004). The exact formal definition of FDSLRM is the following:

A model of time series X(.) is said to be the finite discrete spectrum linear regression model 
(FDSLRM) iff X(.) satisfies:

                                                                                                                                 � (1)

where:
 representing a time domain is a countable subset of the real line ,

k a l are fixed known non-negative integers, i.e. , , 
 is a vector of regression parameters, 

  is a random vector with  and with covariance matrix  
	 of size l×l, where    

 and  are real functions defined on , 
w(.) is a white noise uncorrelated with Y and with dispersion D[w(t)]=σ2 > 0. 
In FDSLRM applications (Štulajter, 2003, 2007; Štulajter and Witkovský, 2004) the most frequently 

considered time domain set  is the set of natural numbers  .   
For further considerations, we remind one of basic properties of the FDSLRM (Štulajter, 2003), which 

says that a finite FDSLRM observation  ',  satisfies a linear mixed model 
(LMM) of the form:

                                   with� (2)

where matrices F (size n × k) and V (size n × l ) are known design matrices given by values of functions  
 f for times t = 1,2,…, n and w = (w(1),…,w(n))' stands for a finite n-dimensional white noise 

observation. In the language of LMM terminology β would represent the k-vector of fixed effects and 

                                  

    with                   with               
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the random component would depend on l-vector Y of random effects and n-vector w of random errors. 
This fundamental FDSLRM property allows us to apply many results and mathematical techniques of 
LMM methodology (e.g. Demidenko, 2013; McCulloch et al., 2008; Searle et al., 2006; Witkovský, 2012).

The last remark in our formal introduction of FDSLRM deals with the variance parameters of Y and  
w(.). It is common to describe the parameters by one vector                                     , so ν becomes an element  
of the parametric space Υ .  Υ Because of several practical or theoretical reasons (similar  
as in the case of LMM; see Remark 1), it is common to work only with a restricted space Υ* . Υ

	 Remark 1 (Parametric space for variance parameters ν) 
One practical reason for working only with the restricted space Υ* is that any zero variance σ 2j  implies  

	 almost sure zero random component Yj (i.e. Yj has a degenerate distribution with P(Yj = 0) = 1), which 
	 in practice means ignoring this component in the model (1). Another research reason is to avoid  
	 technical or numerical problems dealing with zero variances in developing theory. However, there can  
	 be considerable interest not to reduce Υ, e.g. in testing (e.g. testing for overdispersion, where we would  
	 carry out testing for zero variance components and dropping them from the model) or in guaran- 
	 teeing the existence of estimators and predictors (e.g. in some cases, estimates of ν based on least- 
	 square minimization or likelihood maximization exist only in space Υ, but not in restricted space Υ*).

1.2 The second stage – time series data
In the second stage of kriging we observe an empirical realization of finitely many values X = (X(1), X(2), 
…, X(n))' of time series X(.). As a real data example, we use a microeconomic time series dataset (Figure 1) 
from Štulajter and Witkovský (2004). 

Figure 1  Time series data of electricity consumption during 24 hours in a department store

Source: �Authors’ figure created in R software (R Development Core Team, 2016; real data from the table of Example 4.1, p.116, Štulajter, Witkov-
ský, 2004; the dataset as a text file are available at: <https://goo.gl/tiJjvr>.)
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This time series can be modeled by an adequate Gaussian FDSLRM, if we employ generally appli-
cable empirical considerations commonly used in economics and business (Štulajter, 2002; Štulajter and 
Witkovský, 2004). First of all, economic or business data often show some periodic (seasonal) patterns 
as they are influenced by seasons or regularly repeating events. To identify significant frequencies 
describing the periodic behavior, we apply spectral time series analysis (Andersen et al., 2009; Brockwell  
and Davis, 2006; Priestley, 2004; Štulajter, 2002). Generally, there are more than one frequency. Lower 
frequencies appear in the trend, and higher frequencies are included in the random component. Accor- 
ding to the periodogram,5 the main tool of the spectral analysis, there are three most significant Fourier  
frequencies λ1 = 2π/24, λ2 = 2π/8, λ3 = 2π/6. Considering and checking all mentioned facts in same way 
as in Štulajter and Witkovský (2004), we get the following FDSLRM (1) with k = 3, l = 4 for the explored 
consumption dataset:

�                          (3)  

1.3 The third stage – the BLUP for a chosen future value
As for the third kriging stage, finding the BLUP, in this case, is straightforward.  Mathematically, model 
(3) represents an orthogonal version of FDSLRM (Štulajter, 2003) for which exists a closed analytic form 
of the BLUP (theorem 2.1 in Štulajter, 2003, p. 129) for any future value .  This form 
denoted by X* (n + d) generally depends on variance parameters ν:

1.4 The fourth stage – estimation of models parameters and use of the EBLUP
In practical situations like this one, we need to estimate regression parameters  
and variance parameters    Υ  Various standard and also nonstan-
dard mathematical techniques for estimating β and ν can be found in above mentioned references dealing 
with kriging and FDSLRM (Christensen, 2001; Hančová, 2008; Štulajter, 2002; Štulajter and Witkovský, 
2004), but also in references dealing with the methodology of LMMs (e.g. Rao and Molina, 2015; Searle 
et al., 2006).

With regard to statistical properties, we remind some general results from the estimation theory. 
Standardly used estimators of β in linear regression models like least squares estimators (ordinary – 
OLSE or weighted – WELSE) or maximum likelihood estimators (MLE or REMLE) are linear with 
respect to a time series observation X. For our FDSLRM (3), OLSE of the regression parameters β give us6 

β = (44.38, –3.15, –3.52). 
In connection with estimating ν, standard least-squares methods of estimation in FDSLRM in many 

cases lead to quadratic estimators which are invariant quadratic forms7 in X. Variance parameters can 
be estimated e.g. by double ordinary least squares estimators (DOOLSE) or by their modified unbiased 
version (MDOOLSE) as it is described in Remark 2. 

	 Remark 2 (DOOLSE and MDOOLSE)
The double least squares method is based on two following steps. First of all, we find OLSE β for β,  

	 then we can compute empirical residuals ε = X – Fβ. Then matrix εε' = (X – Fβ) (X – Fβ)' represents 

5  	The periodogram can be computed in the base R package e.g. by function spec.pgram{}.
6  	In the R environment, OLSE can be found via function lm{} in the base R package. 
7  	It means that estimators of variances can be written as X'AX, where A is some n × n real symmetric matrix and values 

of X'AX do not depend on β. In FDSLRM, it is equivalent with the condition AF = 0.

 

                         

 

. 
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	 the well-known estimation matrix S(X) for a covariance matrix ∑ of X which is equal to Cov(X) = 
	 Σν = 	 σ2In + VDV', D = diag{σj

2  }. Using ordinary least squares method a second time, i.e. minimizing
the square of a norm (distance) between Σν and S(X) with respect of ν ,  Y, we find OLSE estimates ν 

	 which are called DOOLSE. As for calculation methods, two approaches are usually applied: multi  
	 variable calculus and geometrical projection theory, since the least squares problems can be expressed  
	 in terms of orthogonal projections.

Requiring unbiasedness, we can modify DOOLSE to unbiased estimators (MDOOLSE). The exact  
	 formal definition of these type of estimators in linear regression models can be found e.g. in Štulajter 
	 (2002, p. 25).  Moreover, it can be shown (Štulajter, Witkovský, 2004) that in any orthogonal Gaussian 
	 FDSLRM as it is in our case (3), DOOLSE are identical with maximum likelihood estimators (MLE) 
	 and MDOOLSE are equal to restricted MLE (REMLE).

If we apply corresponding DOOLSE/MDOOLSE formulas based on the geometrical theory 
of orthogonal projectors (Štulajter and Witkovský; 2004, p. 107, last two formulas) in our FDSLRM, 
we get the following results:

projectors for DOOLSE 	 ν = (3.00,0.12,1.61,–0.24,1.02)  Υ* 
projectors for MDOOLSE 	 ν = (3.53,0.08,1.57,–0.29,0.97)  Υ* 

We see that in both cases projection formulas for the standard estimation methods fail. Variance com-
ponents can never be negative. However, it is very important to realize that the DOOLSE/MDOOLSE 
estimates can be based on the projection method only if the method provides values for ν belonging 
to the parametric space Υ* or Υ. Therefore in our case we had to use other methods of computation, 
e.g. numerical iterative methods (Štulajter, 2002), which indicate that DOOLSE give us an estimate of ν  
with zero component σ 32  lying on the boundary of Υ or no estimate of ν, if we consider restricted space Υ*. 
What action should be done in this situation?

In the framework of LMM, such estimation problem with negative or zero values of estimates for 
variance components has a long and rich history (Searle et al., 2006). It is a well-known problem at least 
40 years, especially in using ANOVA, MLE and REMLE estimators for LMMs. Inspiring by section 4.4 
in Searle at al. (2006, p.130), there are several possibilities how to solve it, if we speak about FDSLRM: 
(i) understand it as a consequence of insufficient data and collect more time series data; (ii) accept zero 
estimates and ignore the zero variance components in the model, if it is reasonable; (iii) interpret nega-
tive or zero results as indication of a wrong model and build a new, but still adequate FDSLRM model 
for considered data; (iv) use a modified or new method of estimation leading to positive estimates. In 
the case of FDSLRM, only last two possibilities were already studied. 

Building a new adequate FDSLRM model was done in Štulajter and Witkovský (2004). During 
the spectral analysis authors replaced the third most significant Fourier frequency 2π/6 by the fourth one 
2π/12. However, simulation results of the next section will show that this approach is not fully satisfac-
tory since it does not work in relatively frequent circumstances.

The last above-mentioned solution (iv) is to use new estimators with always positive or almost sure  
positive values. Such new estimators also based on least squares (Remark 3), called natural estimators  
(NE), were proposed and studied in Hančová (2008). Statistically these estimators are biased invariant 
quadratic forms.

	 Remark 3 (Invariant quadratic biased NE)
The main idea behind NE comes from the fact that   Then, it is reasonable to  

	 estimate an l-vector of unobservable realization y of Y in model (2) by ordinary least squares and use 
	 squares of these estimates   as estimators of  (see more details and the exact formal 

~

~
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	 definition in section 2.1, Hančová, 2008). Geometrically, these so-called natural estimators can be 
	  expressed by oblique projectors. 

If we are interested in non-negative and simultaneously unbiased estimators, then generally there do not  
	 exist any non-negative unbiased estimators for  .  Twenty years ago, Ghosh (1996) formu- 
	 lated an elegant proof of two general important results connected with incompatibility between 
	 non-negativity and unbiasedness of random effects estimators in LMM: (i) in any LMM with  
	   ∞ ∞  Υ Υ   ∞ ∞  Υ  and X having an absolutely continuous probability distribution with 
	 respect to some σ-finite measure, if νj

*(X) is an unbiased estimator of σ j2 , then there is always non- 
	 zero probability for νj

*(X) to be negative with respect to some β, ν; (ii) the same is true,  
	 *ν  for some β and ν, if we suppose  ∞Υ Υ*  ∞Υ  and X having a probability  
	 density function continuous in all  . ΥΥ*. 

Computing NE numerically (Hančová, 2008, p. 268, formulas 2.2, 2.3), we get . Υ
. ΥΥ. In practice these estimates are suitable for computation of BLUPs (Štulajter, 2003  

the first formula on p. 129) for future values .  These „plug-in” BLUPs are called empiri-
cal BLUPs (EBLUPs). At the same time NE estimates can be used for computation of corresponding 
„plug-in” MSEs (Štulajter, 2003, the second formula on p. 129) and 95% prediction intervals,8 which are 
commonly used in displaying the uncertainty in time series forecasting (Hyndman and Athanasopoulos, 
2014). Figure 2 is a summary graphical representation of obtained predictions for electricity consump-
tion during the next eight hours. 

8  	A formula for 

Figure 2  �Kriging forecasting of the electricity consumption for next 8 hours with 95% forecast intervals (solid line 
in the gray shaded region) and the time series trend (dashed line)

 . 

Source: �Authors’ figure based on their calculations, created in R software (R Development Core Team, 2016)
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The plug-in step replacing true value of parameters (for which the BLUP was derived) by NE causes 
a certain deviation in the mean squared error. Therefore, the main task of the last fifth stage of kriging is 
to study statistical properties of EBLUPs based on NE which are invariant quadratic biased estimators. 
However, such research has not yet been made. So, the third section of the paper (after the simulation 
study) will be devoted to our analysis of the last stage of kriging using NE in the broader context of theo-
retical developments in kriging methodology.

2 Simulation study
To answer our research question, how efficiently building a new FDSLRM can solve problems with negative 
values of projectors for standard variance estimates (DOOLSE, MDOOLSE), we planned four possible 
FDSLRM simulation designs whose structure can be based on three significant frequencies chosen 
by Štulajter and Witkovský (2004): λ1 = 2π/24, λ2 = 2π/8, λ3 = 2π/12. The considered designs differ 
with respect to possible number m  {0,1,2,3}  of given frequencies included in the FDSLRM trend 
(remaining 3-m frequencies are in the random component – shortly RC).  Due to easier, more com-
patible notation with spectral analysis, we wrote their forms by the following compact formula 
(m  {0,1,2,3}):

                                                                                                                                             
             � (4) 

for m = 1 we get the identical model with the original one applied by Štulajter and Witkovský (2004). 
OLSE for regression parameters α, βi,γj and NE for variance parameters calculated from the real dataset 
(Figure 1) were assigned as true parameters for simulation designs (Table 1). We also mention that in this 
case, NE values are evidently nonzero and they are also close to DOOLSE and MDOOLSE for the dataset. 

             

Table 1  Vectors of regression and variance parameters for considered model designs

Source: Authors’ calculations based on real data from Štulajter, Witkovský (2004) using R (R Development Core Team, 2016)

Model design Regression parameters β Variance parameters ν

m = 0
(3 frequencies in RC) (44.38)’ (1.09, 9.93, 12.43,

2.97, 1.76, 0.37, 1.86)’

m = 1
(2 frequencies in RC) (44.38, –3.15, –3.52)’ (1.09, 2.97, 1.76, 0.37, 1.86)’

m = 2
(1 frequency in RC) (44.38, –3.15, –3.52, –1.72, –1.33)’ (1.09, 0.37, 1.86)’

m = 3
(0 frequencies in RC)

(44.38, –3.15, –3.52,
–1.72, –1.33, 0.61, 1.36)’ (1.09)’

Using R, we simulated N = 5 000 time series realizations for each design (values of Yj, Zj, w(t) were 
generated from normal distributions with zero means and variance parameters given by Table 1). Then 
for each realization (a time series dataset) estimates via corresponding orthogonal or oblique projec-
tors (for DOOLSE, MDOOLSE and NE) were computed and simultaneously a relative occurrence 
of the projections with negative values was counted. Complete results dealing with a relative occurrence 
of negative values in the four evaluated simulation designs are reported in Table 2 (NE are not included 
since they really led only to positive estimates).

As for distributions, Figure 3 presents typical results in the form of histograms for projectors dealing with 
MDOOLSE and NE (as examples) in the case of simulation design m = 2. Table 2 clearly manifests that in 
all designs projection methods for computing estimations (DOOLSE = MLE, MDOOLSE = REMLE) give  
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us from 6% up to 35% of wrong negative values for estimates which are not small, insignificant numbers. 
If we are interested in actual values of the estimators, alternative numerical methods (Štulajter 2002; also 
applied by us in R) show that zero values of DOOLSE = MLE and MDOOLSE = REMLE for ν correspond  
to the negative values of projectors. Since ν has only nonzero components, from a theoretical point 
of view, zero estimates also mean a failure. Therefore, we can conclude that changing or rebuilding the model 
(3) as it was done by Štulajter and Witkovský (2004) will not work in relatively frequent circumstances.  

Table 2  �Relative occurrence of negative values (as results of projection methods) for estimation of variance 
parameters ν in N = 5 000 simulated replications for each model design

Source: Authors’ simulation results based on parameters in Table 1 using R (R Development Core Team, 2016)

Source: Authors’ figure based on their calculations, created in R software (R Development Core Team, 2016)

Model design Projectors
for estimators Relative occurrence of negative values for:

m = 0
(3 frequencies in RC)

DOOLSE 6.48 % 6.76 % 13.44 % 17.16 % 32.68 % 16.98 %

MDOOLSE 6.62 % 6.92 % 13.84 % 17.64 % 33.60 % 17.30 %

m = 1 
(2 frequencies in RC)

DOOLSE 13.16 % 16.36 % 32.10 % 15.54 % x x

MDOOLSE 14.14 % 17.82 % 34.56 % 16.60 % x x

m = 2 
(1 frequency in RC)

DOOLSE 29.54 % 14.66 % x x x x

MDOOLSE 33.24 % 16.64 % x x x x

m = 3 
(0 frequencies in RC)

DOOLSE x x x x x x

MDOOLSE x x x x x x

Figure 3  �Typical results of the simulation study showing relative occurrence of values (as results of projection 
methods) for estimation of variance parameters in model design m = 2
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3 KRIGING in PRACTICE – MSE of EMPIRICAL BLUPS
During the fourth stage of kriging, we saw that in the next stage, there is a need to study effects of esti-
mating unknown variance parameters of FDSLRM on statistical properties of BLUPs, if these true pa-
rameters (to avoid any misunderstanding in this section we denote them νT instead of ν are replaced 
by variance estimates  (e.g. invariant quadratic biased NE). Special attention must be paid to MSE of 
EBLUPs which determines not only quality of the obtained empirical predictors but allows us to express 
corresponding forecast intervals or to test statistical hypotheses.

However, general theory of empirical linear unbiased predictors (Harville, 2008; Štulajter, 2002; Wit-
kovský, 2012; Ża,    dło, 2009) says that explicit expression for the MSE of an empirical predictor (EBLUP) 
is not known. One of the reasons why it is still open research problem consists of the fact that EBLUP is a 
nonlinear function of the observation X. Therefore, finding such expression is a very difficult mathematical 
task. On the other hand, the theory gives us an approximation for the correction (adjustment) of MSE of 
EBLUPs with respect to the original BLUP using Taylor’s series (see e.g. Harville, 2008; or Štulajter, 2002):

                                                                                                                                  � (5)

Although we know explicit forms of  for NE (Hančová, 2008), the direct use of these 
quadratic forms in theoretical and corresponding computational study of the approximation (5) would 
lead to cumbersome and uselessly complicated mathematical work. In this case, more abstract and general 
approach paradoxically makes the problem more tractable and understandable, stripping away non-essen-
tial features. In addition, such generalization allows us to use a new arsenal of mathematical techniques. 

Therefore mathematically, it is more useful to describe NE  in the approximation (5) only as 
invariant quadratic biased estimators of the general form    Partial derivatives 
∂Xν

* (n + d)/∂νa have the general form ,   If we introduce a concept of the so-called 
parameter centered quadratic form ,  then it is easy to see that the 
approximation (5) depends on expressions such as     

These moments are up to sixth order with respect to X. However, as our next theoretical results de- 
monstrate, if the finite time series observation X (model (2)) comes from Gaussian FDSLRM (1) and con- 
sequently has a multivariate normal distribution X~N(Fβ, Σ) with the positive definite covariance n × n 
matrix Σ (Σ > 0), then all moments up to sixth order can be expressed as functions depending only on the 
second-order (not higher) properties of X given by mean value parameters β and variance parameters ν. 
Under the assumption of normality for X, using the modern algebraic apparatus of advanced multivari-
ate statistics (Ghazal and Neudecker, 2000; Kollo and Rosen, 2005) which includes vectorization, com-
mutation matrices, the Kronecker product and relations among them, we derived the explicit form of 
mentioned expressions. Our results are summarized by the following general theorem which contains 
the moments for any invariant quadratic biased estimators (NE are a special case). Due to higher mat- 
hematical sophistication and technicalities, its proof is explained in the Appendix.

Theorem (the explicit form of moments)
Let a random vector X~N(Fβ, Σ) be a given finite observation of time series, where  
and . Let  be the invariant quadratic forms, i.e. 

 and  .  and  and  .  Then for parameter-
centered quadratic forms  and  the following properties hold: 
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(i)	                                                                            ,

(ii)	                                                                            ,

(iii)	                                                                         ,

(iv)	                                               ,

(v)	
                                                                                           .

CONCLUSIONS AND further DEVELOPMENTS
One of the most important areas of time series theory application is forecasting time series providing 
a crucial knowledge for effective and efficient planning or decision making. In the paper, we have 
presented a general framework of forecasting methodology for econometric time series, called kriging. 
Our kriging application deals with a recently introduced family of linear regression time series models 
named FDSLRM, which apply regression not only to a trend, but also to a random component of the 
observed time series.

Using a real data example dealing with electricity consumption, we have also investigated one of the 
current research problems of kriging – a problem of negative or zero estimates which leads to kriging 
failures in empirical prediction. Performing a simulation study, we manifested that this problem occurs 
in relatively frequent circumstances and therefore cannot be neglected. Simultaneously we pointed out 
inadequacy of rebuilding the model as used problem solution. If computational methods using a dataset 
of time series observation give failing negative or zero values for standard estimates, then we can apply 
one of possible solutions – using alternative estimators like natural estimators (NE) which are invariant 
quadratic biased estimators.

Our consequent analysis in the broader context of kriging methodology developments allowed us to 
derive explicitly moments of a finite Gaussian time series observation for any invariant quadratic biased 
estimators of time series variances. Confronting with other research, we have found that our theoretical 
results were a direct extension of the results of the previous research (Prasad and Rao, 1990; Srivastava 
and Tiwari, 1976).  In comparison with these references, our use of the matrix approach of advanced 
modern multivariate statistics in proving our results seems more elegant and conceptually simpler than 
the original cumbersome multiple use of sums with many indices. 

As for further research and kriging developments, these moments will allow a theoretical study of 
properties of empirical predictors and corresponding approximations of MSE based on any invariant 
quadratic biased estimators (e.g. according to Harville, 2008; Štulajter, 2007). Since our results are written  
in the recurrent matrix form, they are also very suitable for checking or conducting an effective computa- 
tional research (statistical computing environments like R are essentially matrix algebra processors) with 
real empirical data using simulations or bootstrap methods for time series and kriging (Kreiss and 
Lahiri, 2012; Schelin and Sjöstedt-de Luna, 2010; Sjöstedt-de Luna and Young, 2003). Such computational 
research could also be applied to study effects of MLE and REMLE, in general FDSLRM not expressible 
in a closed analytic form, on statistical properties of BLUPs and their MSEs.

Our last conclusion deals with a corresponding implementation of FDSLRM in R. Although any finite 
FDSLRM observation satisfies a linear mixed model (LMM), according to our inspection it seems 
that no current package in R for LMM methodology9  is directly suitable for FDSLRM. Therefore, one 

  

   

   

   

  

 

9  	�There are many packages in R fitting various forms of LMM, e.g. amer, gamm, glmmAK, lme4.0, lmec, lmm, MASS, 
MCMCglmm, nlme or PSM (more details in Galecki and Burzykowski, 2013).
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of the tasks of future computational FDSLRM research is to create a fully functioning R package using 
the current object-oriented programming. We also assume that the O-O programming approach which 
is now standard in the context of statistical modeling (Galecki and Burzykowski, 2013) allows us to use 
some classes of objects and methods operating on them from existing R packages for LMM. 
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APPENDIX: PROOF
Since used arguments are very similar in proofs of all items (i)–(v), we explain ideas of the proof only  
for the first two items (i), (ii). We achieve the first simplification, when we concentrate on deriving mo-
ments .  The second, essential simplification of the proof arises from introducing 
the residual vector , where  using linearity of 
mean value E(.), invariance of  and rewriting considered moments as functions of ε:

Assumptions of the theorem about  give us immediately    
At this moment, we recall needed expressions and properties of multivariate statistics apparatus 

(Ghazal, Neudecker, 2000; Kollo, Rosen, 2005):
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a)	 vec a´ = vec a = a for any column vector a where vec is defined as follows: 
	 let A be a m × n matrix and A.j the jth column of A; then vec A is the mn-column

	 vector vec                                                     

b)	vec ab´ = b  a for any pair of column vectors a and b where  is the Kronecker product 
		  (also known as the direct or tensor product) defined in general for arbitrary k × l matrix A with  
		  elements Aij and m × n matrix B by the formula:

                                                                                    

c)	 vec (ABC) = (C´  A)vec B = vec[(C´  A)vec B] = (vec B  Imp)´vec(C´  A) for compatible 
		  matrices A,B and C, where mp is the row order of C´  A,

d)	tr (A´B) = (vec A)´vec B    for compatible matrices A and B,
e)	 Kmn := ∑ij(Eij  E í j), i  {1,2,…, m},  j  {1,2,…, n} is called commutation matrix, where ∑ij is 

		  a double summation symbol, Eij is a m × n matrix with a unity in its i,j-th position and zeroes 
		  elsewhere, 

f)	 Kmn vec A = vec Á ,
g)	 (A  B)(C  D) = AC  BD for compatible matrices A,B,C and D,
h)	K´mn = K –1

m    n = Knm,
i)	 Km1 = K1m = Im,
j)	 vec (A  B) = (In  Kqm  Ip)(vec A  vec B) for m × n matrix A and p × q matrix B,
k)	 Krs,m = (Ir  Ksm)(Krm  Is). 

Now employing property c) we easily conclude about term E(εε' Aε)  that:

E(εε´Aε) = E(ε vec ε´Aε) = E[ε(ε´  ε´)vec A] = E[ε(ε´  ε´)]vec A .

An expression for E[ε(ε´  ε´)] (corollary 2.2.7.2 (ii) in Kollo, Rosen, 2005, p. 204) and E(ε) = 0 
definitively lead to:

E(εε´Aε) = 0.

The most sophisticated part of the proof is the calculation of E(εε´Aεε´). Using properties c) and j), 
we can write:

vec εε´Aεε´ = (vec´A  In2 )(In  Knn  In)(ε  ε  ε  ε) .

Taking the mean value of ε  ε  ε  ε, using c) and the expression for E[ε(ε´  ε´  ε´)] (Corollary 
2.2.7.2 (iii) in Kollo, Rosen, 2005, p. 204) we find that:

E(ε  ε  ε  ε) = vec[Σ  vec´Σ + (vec´ Σ  Σ)(In3 + In  Knn) ] .

Then three expressions from the last equation need to be treated separately. Using appropriate relations 
from a)–k) and results from preceding steps, it is possible to show that the following equalities hold:

, 
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(vec´ A  In2)(In  Knn  In)vec(Σ  vec´Σ) = vec ΣAΣ , 
(vec´ A  In2)(In  Knn  In)vec(vec´ Σ  Σ) = vec ΣAΣ , 
(vec´ A  In2)(In  Knn  In)vec[(vec´ Σ  Σ)(In  Knn)] = tr(AΣ)vec Σ .

All partial results together directly provide the final form for E(εε´Aεε´):

E(εε´Aεε´) = 2ΣAΣ + tr(AΣ)Σ .

Combining obtained results for moments  with , we finally 
get required moments in (i), (ii).


