Exploratory Analysis of Customer Churn: Utilizing Visualization Tools Available for Python
Autorské údaje
Michal Bogár
Autor
Bogár Michal EUBFHIKOV - Katedra operačného výskumu a ekonometrie FHI
Zdrojový dokument
Ekonomika a informatika : vedecký časopis FHI EU v Bratislave a SSHI. Roč. 22, č. 2 (2024), s. 4-17. - Bratislava : Ekonomická univerzita v Bratislave, 2024. ISSN 1339-987X
Exploratívna dátová analýza sa ukázala byť dôležitým nástrojom pri snahe lepšie pochopiť odchodovosť zákazníkov telekomunikačného operátora, a to skúmaním údajov o viac ako 7000 zákazníkoch, pričom boli využité nástroje z ekosystému Python, najmä Jupyter Lab, spolu s knižnicami ako pandas, NumPy, Seaborn a Plotly. Tento článok vychádza z myšlienok, ktoré koncipoval John Tukey, a zdôrazňuje význam vizualizácie údajov na odhalenie skrytých vzorov a vzťahov v dátach, ktoré ovplyvňujú správanie zákazníkov. Postupnou analýzou rôznych zákazníckych atribútov, od tých demografických, až po premenné, ktoré popisujú ich predplatené služby sme identifikovali trendy vedúce k odchodovosti, vrátane výrazného vplyvu dĺžky viazanosti, rodinného stavu zákazníka a citlivosti na cenu produktov. Získané výsledky poukazujú na to, že zákazníci so zmluvami bez viazanosti a zákazníci bez partnerov alebo detí sú náchylnejší prerušiť zmluvu. Vytvorené interaktívne grafy poskytujú nielen intuitívne prehľady, ale pomáhajú aj pri hlbšom skúmaní dát, čím vytvárajú solídny základ pre prediktívne modelovanie. Táto analýza zdôrazňuje dôležitosť exploratívnej analýzy pri formulovaní účinných retenčných stratégií na udržanie zákazníkov a ponúka možnosti na pokračovanie vo výskume využívajúc pokročilé analytické techniky, ako sú strojové učenie a kohortová analýza, na predikovanie odchodovosti.
Kategória EPC
Vedecké práce v domácich nekarentovaných časopisoch